Sepam series 20, series 40, series 80

Digital protection relays

Catalogue 2008

Range description

Sepam series 20 and Sepam series 40

Sepam series 80

Additional modules and accessories

Order form

Index

2

3

4

5

6

A new path for achieving your electrical installations

A comprehensive offer

The Sepam range is part of a comprehensive offer of Schneider Electric products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements. All of these products have been designed to work together: electrical, mechanical and communication compatibility.

The electrical installation is thus both optimised and has improved performance:

better service continuity, increased personnel and equipment safety, guaranteed upgradeability, efficient monitoring and control. You therefore have all the advantages at hand in terms of know-how and creativity for achieving optimised, safe, upgradeable and compliant installations.

Tools for facilitating the design and installation

With Schneider Electric, you have a complete range of tools to help you get to know and install the products whilst complying with current standards and good working practices. These tools, technical sheets and guides, design software, training courses, etc are regularly updated.

Schneider Electric is associating itself with your know-how and your creativity to produce optimised, safe, upgradeable and compliant installations

For a real partnership with you

A universal solution doesn't exist because each electrical installation is specific. The variety of combinations on offer allows you to truly customise the technical solutions.

You are able to express your creativity and put your know-how to best advantage when designing, manufacturing and exploiting an electrical installation.

Sepam series 20 Sepam series 40 Sepam series 80

Range description

Maximize protection	4
Selection guide for all applications	12
Substation applications	14
Feeder protection	14
ncomer protection	15
Busbar applications	16
Fransformer applications	18
Fransformer feeder protection	19
Fransformer incomer protection	21
Motor applications	24
Generator applications	28
Capacitor applications	32
Communication networks and protocols	34
mplementation	36
Examples of architectures	37
Available Sepam data	40
Selection table	40
Description	41
Sepam series 20 and Sepam series 40	47
Sepam series 80	85
Additional modules and accessories	139
Order form	217
ndex	227

1

Increase energy availability

Fast response

Maximum dependability

= 100% available energy

Your electrical equipment is under control. With Sepam protection relays, you get maximum energy availability for your process.

Sepam protection relays Number one in dependability

Maximize energy availability and the profits generated by your installation while protecting life and property.

Keep informed to manage better

With Sepam, you get intuitive access to all system information in your language so that you can manage your electrical installation effectively. If a problem occurs, clear and complete information puts you in a position to make the right decisions immediately. The electrical supply is restored without delay.

Maintain installation availability

Sepam maintains high energy availability thanks to its diagnostics function that continuously monitors network status. In-depth analysis capabilities and high reliability ensure that equipment is de-energized only when absolutely necessary. Risks are minimized and servicing time reduced by programming maintenance operations.

Enhance installation dependability

Sepam series 80 is the first digital protection relay to deliver dependability and behaviour in the event of failure meeting the requirements of standard IEC 61508. Sepam manufacturing quality is so high that the units can be used in the most severe environments, including off-shore oil rigs and chemical factories (IEC 60062-2-60).

1982

Launch of first multi-functional digital protection relay

2008

Over 400,000 Sepam units installed around the world

Electrical utilities, petrochemical plants, hospitals, infrastructures, shopping centres, small industry.

Improve satisfaction

A set of simple and effective functions suited to your customer's application

Fast response from Schneider Electric: save time at every step in your project

With Sepam protection relays, you can count on simple, high-performance products and the support of top-notch Schneider Electric teams. Meet your obligations the easy way.

Sepam protection relays

Save time at every step in project development and installation to consistently meet your project deadlines.

Go for simplicity

With multi-functional Sepam protection relays, you can measure, manage, analyze and produce diagnostics for all applications in an installation. Range modularity makes it easy to select the relay corresponding exactly to your needs.

The range is structured for typical applications (substations, transformers, generators, capacitors, busbars and motors) and provides the necessary functions for each application (protection, metering, control and monitoring, etc.).

Starting with a Sepam base unit, complete solutions can be built up by adding input/output modules, sensors and communication modules.

Make configuration easily

A single PC software tool for the entire Sepam range makes system start-up and operation particularly easy. The user-friendly program guides you step by step from the initial programming on through to final commissioning. Sepam produces a detailed report on system configuration and all the activated protection functions.

On Sepam series 80, the entire setup is saved to a memory cartridge that can be accessed in front, for instance when replacing a unit.

Communicate the open way

In addition to the DNP3, IEC 60870-5-103 and Modbus standards, Sepam complies with IEC 61850 and uses the communication protocol that is today's market standard to interface with all brands of electrical-distribution devices.

Installation

Local display

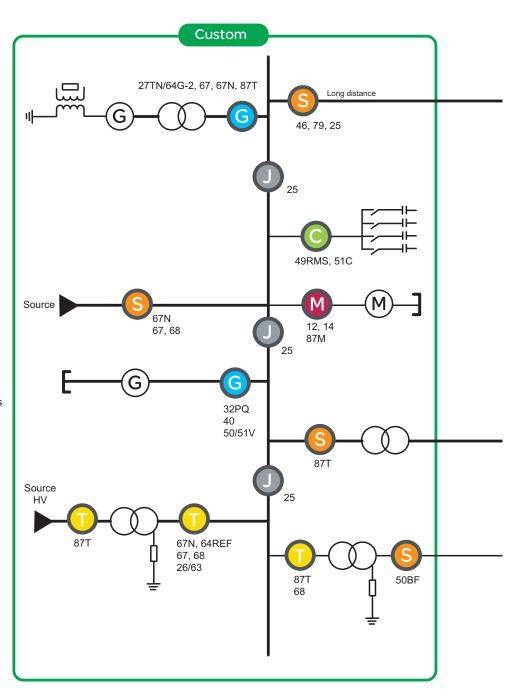
Supervision

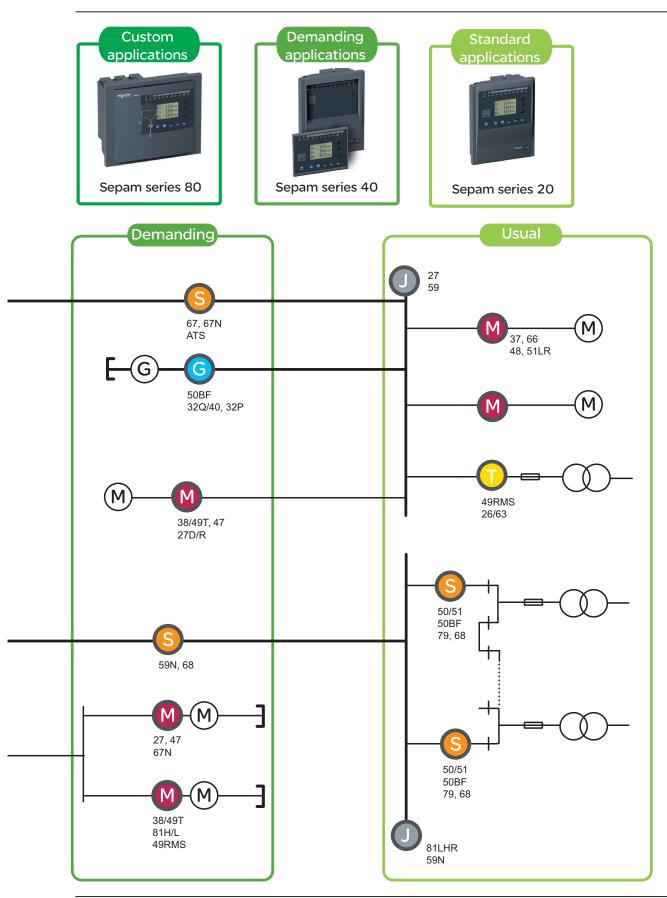
Schneider Electric

countries

does business in 190

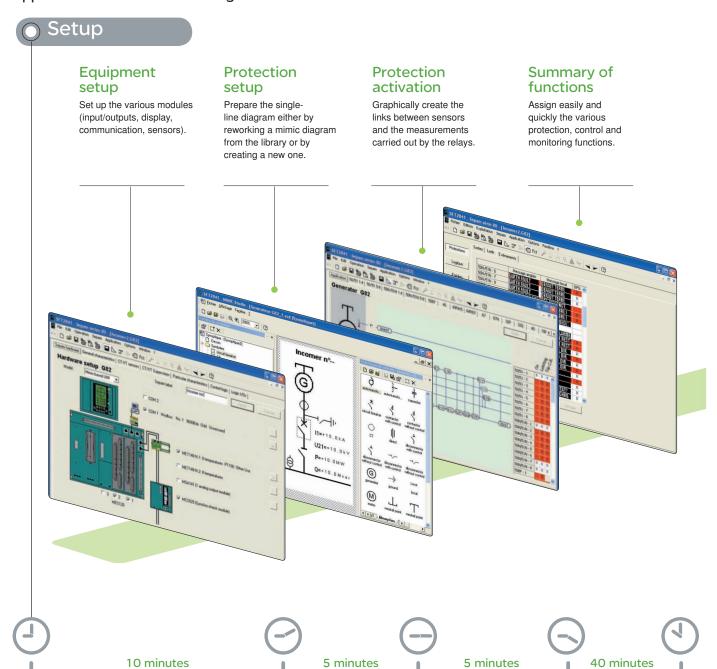
What level of safety? For what applications?


Sepam range design is based on a simple idea. All users should be able to find a solution corresponding exactly to their needs and offering the right balance between performance, simplicity and cost.


A Sepam relay for each application...

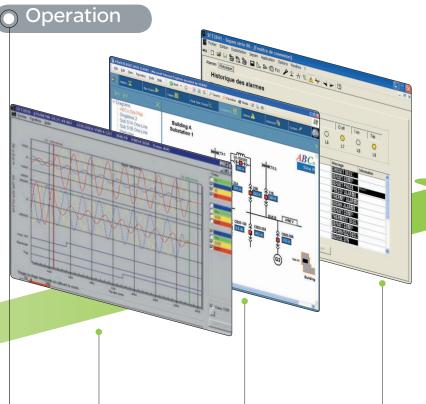
- Substations
- Transformers
- G Generators
- **C**apacitors
- **B** Busbars
- Motors

... and different levels of protection


- > Thermal protection based on temperature rise calculation, with predictive indications to optimize process control.
- > Directional phase over-current protection for closed-loop networks.
- > Directional earth-fault protection for all types of neutral systems.
- > Fast and highly-sensitive protection of transformers, motors and generators using differential functions with restraint.

Start-up was never so easy

The Sepam programming and operating software provides a single environment for the entire range. The result is a simple, user-friendly approach for fast commissioning.


The setup is now ready to be deployed on all the Sepam units in the installation.

Automatic generation of the relay setup report.

Analysis of waveform capture

Display, analysis and printing of disturbance-recording data.

Real-time supervision

Supervision of the status of all the relays in the electrical installation.

Management of alarms and events

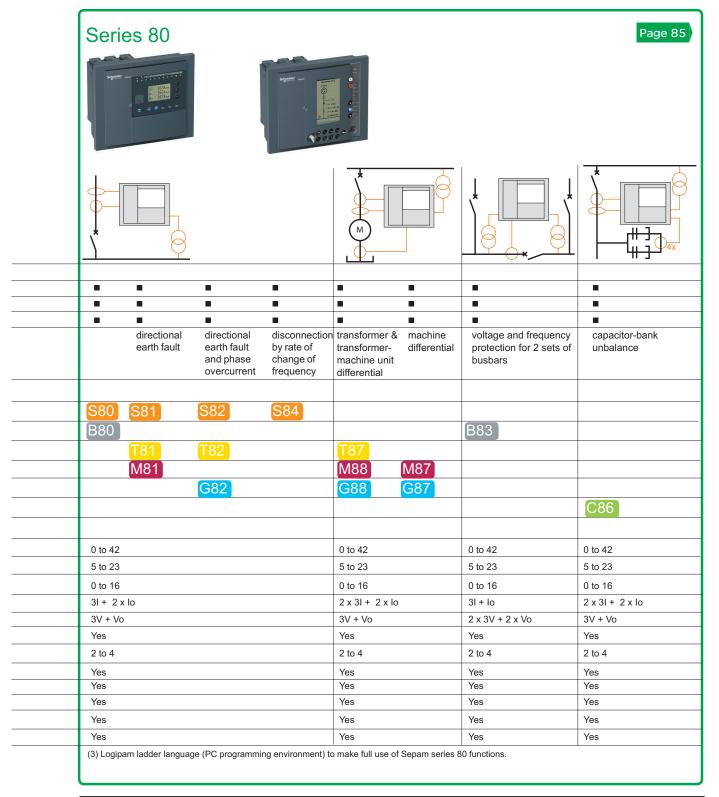
15 years of peace of mind

Selection guide for all applications

Selection guide for all applications

The selection guide proposes the Sepam types suited to your protection needs, based on the characteristics of your application.

The most typical applications are presented with the corresponding Sepam.


Each application example is described by:

■ a single-line d	liagram	bod by.								
indicating: ☐ equipment to I ☐ network config	guration	Series	20		Page 47		Serie	es 40	Page 47	
□ position of me sensors ■ standard and functions to be in protect the appli	specific Sepam	1	:)::::::::::::::::::::::::::::::::::::					**************************************		
				\			*			
Protections	3									
	Current	•	•				•	•	•	
	Voltage				•		•	-	•	
	requency			•	• e		•	P 0 1		
	Specifics		breaker failure		disconnection by rate of change of frequency			directional earth fault	directional earth fault and phase overcurren	t
Application	ıs									
Substa	ation P. 14	S20	S23				S40	S41 S43	S42	
Bu	sbar P. 16			B21	B22					
Transfor	mer P. 18	T20	T23				T40		T42	
IV	lotor P. 24	M20						M41		
Gene	lotor P. 24 rator P. 28						G40			
Capa	citor P. 32									
Characteris	stics									
Logic inputs/	Inputs	0 to 10		0 to 1	0		0 to 10			
outputs	Outputs	4 to 8		4 to 8			4 to 8	·	<u> </u>	
Temperature se	ensors	0 to 8		0 to 8			0 to 16			
Channel	Current	3I + Io					3I + Io			
Channel	Voltage			3V + '	Vo		3V			
	LPCT (1)	Yes		Yes			Yes			
Communication	•	1 to 2		1 to 2	!		1 to 2			
0	Matrix (2)	Yes		Yes			Yes			
Control	Logic equation editor					Н	Yes			
	Logipam (3)									
Other	Memory cartridge with settings					Ш				
	Backup battery					Ш	(2) 0 1	Landalis for street	alamanant of the form	
		(1) LPCT : lo			cer complying			I matrix for simple as m the protection, cor		J

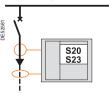
Selection guide for all applications

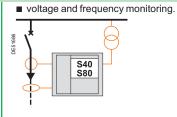
The list of functions is given for information purposes.

Earthing, wether direct or via an impedance, is represented by the same pictogram, i.e. the pictogram corresponding to a direct connection.

Protection functions	ANSI code	S20	S23	B22	S40	S41	S42	S43	S80	S81	S82	S84
Phase overcurrent ⁽¹⁾	50/51	4	4		4	4	4	4	8	8	8	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G	4	4		4	4	4	4	8	8	8	8
Breaker failure	50BF		1		1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	1	1		2	2	2	2	2	2	2	2
Thermal overload for cables	49RMS									2	2	2
Directional phase overcurrent ⁽¹⁾	67						2				2	2
Directional earth fault (1)	67N/67NC					2	2	2		2	2	2
Directional active overpower	32P					1	1	1		2	2	2
Directional active underpower	37P											2
Positive sequence undervoltage	27D			2					2	2	2	2
Remanent undervoltage	27R			1					2	2	2	2
Undervoltage (L-L or L-N)	27			2/1 (4)	2	2	2		4	4	4	4
Overvoltage (L-L or L-N)	59			2	2	2	2		4	4	4	4
Neutral voltage displacement	59N			2	2	2	2		2	2	2	2
Negative sequence overvoltage	47				1	1	1		2	2	2	2
Overfrequency	81H			1	2	2	2		2	2	2	2
Underfrequency	81L			2	4	4	4		4	4	4	4
Rate of change of frequency	81R			1								2
Recloser (4 cycles) ⁽²⁾	79											
Synchro-check (3)	25											

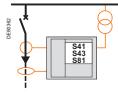
The figures indicate the number of units available for each protection function


- standard, □ options.
- (1) Protection functions with 2 groups of settings.
- (2) According to parameter setting and optional input/output modules.
- (3) With optional MCS025 synchro-check module.
- (4) 2 undervoltage (L-L) and 1 undervoltage (L-N).


Feeder protection

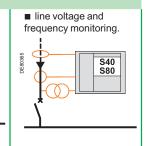
■ feeder short-circuit and overload protection.

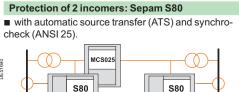
Protection of low-capacitance feeders in impedance earthed or solidly earthed neutral systems: Sepam S20, S23, S40 or S80


■ no voltage and frequency monitoring.

Protection of high-capacitance feeders in impedance earthed or compensated or isolated neutral systems: Sepam S41, S4 or S81

■ specific feeder protection: 67N/67NC.

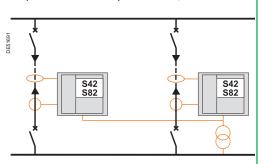



Incomer protection

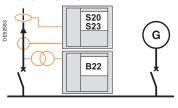
Incomer protection

■ busbar short-circuit protection.

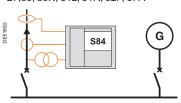
Incomer protection: Sepam S20, S23, S40 or S80 ■ no voltage and frequency monitoring. ■ busbar voltage and frequency monitoring. ■ 540 S80 S80



S80 S80 ATS NC

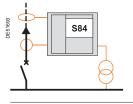

Parallel incomer protection: Sepam S42 or S82

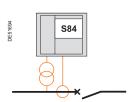
■ specific line or source protection: 67, 67N/67NC.



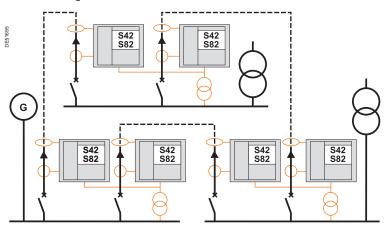
Parallel-incomer protection with disconnection function: Sepam S20 + B22 or Sepam S84 $\,$

■ disconnection-specific functions: 27,59,59N,81L,81R.




■ disconnection-specific functions: 27,59, 59N, 81L, 81R, 32P, 37P.

Protection of an incomer or coupling circuit breaker with load shedding based on frequency variations: Sepam S84


■ load-shedding-specific functions: 81L, 81R.

Ring-incomer protection: Sepam S42 or S82

- line or source protection: 67, 67N/67NC
- directional logic discrimination.

Protection functions	ANSI code	B21	B22	B80	B83
Phase overcurrent ⁽¹⁾	50/51			8	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G			8	8
Breaker failure	50BF			1	1
Negative sequence / unbalance	46			2	2
Positive sequence undervoltage	27D	2	2	2	2
Remanent undervoltage	27R	1	1	2	2
Undervoltage (L-L or L-N)	27	2/1 (3)	2/1 (3)	4	4
Overvoltage (L-L or L-N)	59	2	2	4	4
Neutral voltage displacement	59N	2	2	2	2
Negative sequence overvoltage	47			2	2
Overfrequency	81H	1	1	2	2
Underfrequency	81L	2	2	4	4
Rate of change of frequency	81R		1		
Synchro-check (2)	25				

The figures indicate the number of units available for each protection function

[■] standard, □ options.

(1) Protection functions with 2 groups of settings.

(2) With optional MCS025 synchro-check module.

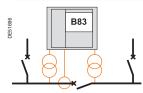
(3) 2 undervoltage (L-L) and 1 undervoltage (L-N).

Voltage monitoring

■ voltage and frequency monitoring.

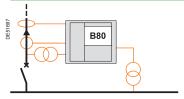
Monitoring of the 3 phase voltages and the residual voltage on busbars: Sepam B21 or B22

■ load-shedding-specific function: 81L.


■ load-shedding-specific functions: 81L, 81R.

Coupling circuit-breaker protection

- busbar short-circuit protection
- voltage and frequency monitoring.


Monitoring of the 3 phase voltages and the residual voltage on 2 both half-busbars: Sepam B83 $\,$

Incomer protection with additional busbar voltage

- busbar short-circuit protection
- line voltage and frequency monitoring.

Additional busbar voltage monitoring: Sepam B80

Selection guide for all applications

Transformer applications

Standard transformer application diagrams do not take voltage levels into account:

- the transformer primary winding is always at the top
- the transformer secondary winding is always at the bottom.

The transformer primary and secondary windings need to be protected.

The Sepam proposed can be installed on either the primary or secondary winding of the transformer. The other winding can be protected by an incomer or feeder type substation application Sepam.

Protection functions	ANSI	T20	T23	T40	T42	T81	T82	T87
	code							
Phase overcurrent ⁽¹⁾	50/51	4	4	4	4	8	8	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G	4	4	4	4	8	8	8
Breaker failure	50BF		1	1	1	1	1	1
Negative sequence / unbalance	46	1	1	2	2	2	2	2
Thermal overload for machines (1)	49RMS	2	2	2	2	2	2	2
Restricted earth fault differential	64REF					2	2	2
Two-winding transformer differential	87T							1
Directional phase overcurrent ⁽¹⁾	67				2		2	2
Directional earth fault (1)	67N/67NC				2	2	2	2
Directional active overpower	32P					2	2	2
Overfluxing (V / Hz)	24							2
Positive sequence undervoltage	27D					2	2	2
Remanent undervoltage	27R					2	2	2
Undervoltage (L-L or L-N)	27			2	2	4	4	4
Overvoltage (L-L or L-N)	59			2	2	4	4	4
Neutral voltage displacement	59N			2	2	2	2	2
Negative sequence overvoltage	47			1	1	2	2	2
Overfrequency	81H			2	2	2	2	2
Underfrequency	81L			4	4	4	4	4
Thermostat / Buchholz (2)	26/63							
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T	□ 8 RTDs	□ 8 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs
Synchro-check (4)	25							

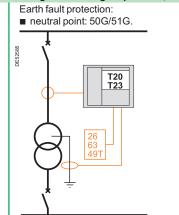
The figures indicate the number of units available for each protection function

- standard, □ options.
- (1) Protection functions with 2 groups of settings.
- (2) According to parameter setting and optional input/output modules.
 (3) With optional MET148-2 temperature input modules.
 (4) With optional MCS025 synchro-check module.

Transformer feeder protection

Transformer feeder protection

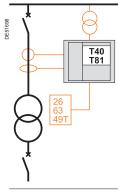
- transformer short-circuit and overload protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 49T).


Transformer feeder protection without voltage monitoring: Sepam T20, T23

Earth fault protection:

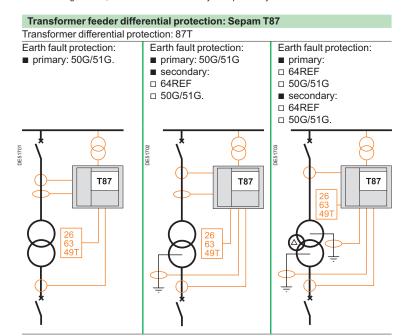
primary: 50G/51G.

T20
T23


49T

Transformer feeder protection with voltage monitoring: Sepam T40 or T81

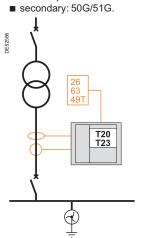
Earth fault protection:


■ primary: 50G/51G.

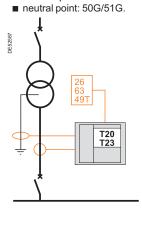
Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.

Transformer feeder protection with voltage monitoring and additional current measurement: Sepam T81 Earth fault protection: ■ primary: 50G/51G ■ tank earth leakage: 50G/51G. ■ secondary: 50G/51G. ■ T81 T81 T81

Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.


Transformer incomer protection

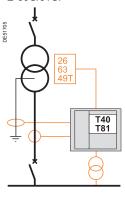
Transformer incomer protection


- transformer short-circuit and overload protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 49T).

Transformer incomer protection without voltage monitoring: Sepam T20,

Earth fault protection:

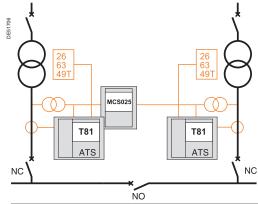
Earth fault protection:


Transformer incomer protection with voltage monitoring: Sepam T40 or T81

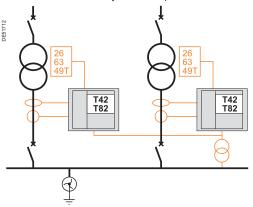
Earth fault protection:

- secondary: 50G/51G.
- T40 T81

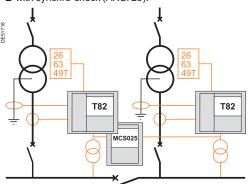
Earth fault protection:


- secondary:
- □ 64REF
- □ 50G/51G.

Transformer incomer differential protection: Sepam T87 Transformer differential protection: 87T Earth fault protection: ■ primary: 50G/51G primary: 50G/51G primary: 50G/51G ■ primary: ■ primary: □ 64REF □ 64REF ■ secondary: 50G/51G. ■ secondary: ■ secondary: □ 64REF □ 64REF □ 50G/51G □ 50G/51G □ 50G/51G. □ 50G/51G. ■ secondary: 50G/51G. ■ secondary: □ 64REF □ 50G/51G. T87 T87 T87 T87 T87

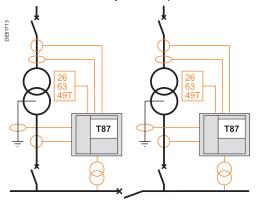

Protection of 2 non-coupled transformer incomers: Sepam T81

- automatic source transfer (ATS)
- synchro-check (ANSI 25).



Parallel transformer incomer protection: Sepam T42 or T82

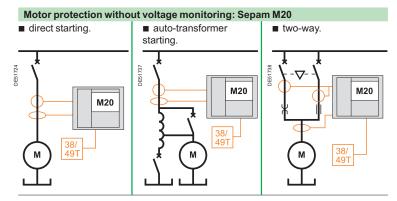
- transformer directional phase overcurrent protection: 67
- transformer secondary earth fault protection: 50G/51G, 59N.

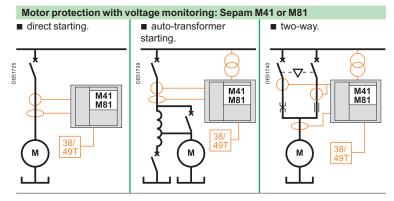


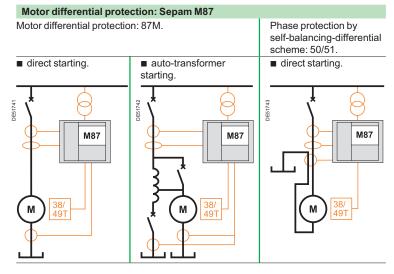
- transformer directional phase overcurrent protection: 67
- transformer secondary earth fault protection: 67N/67NC, 64REF
- with synchro-check (ANSI 25).

Parallel incomer differential protection: Sepam T87

- transformer differential protection: 87T
- directional transformer protection: 67
- transformer secondary earth fault protection: 50G/51G, 67N/67NC 64REF.

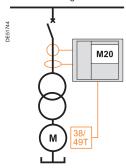

Protection functions	ANSI	M20	M41	M81	M87	M88
	code					
Phase overcurrent ⁽¹⁾	50/51	4	4	8	8	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G	4	4	8	8	8
Breaker failure	50BF		1	1	1	1
Negative sequence / unbalance	46	1	2	2	2	2
Thermal overload for machines (1)	49RMS	2	2	2	2	2
Two-winding transformer differential	87T					1
Machine differential	87M				1	
Directional earth fault (1)	67N/67NC		2	2	2	2
Directional active overpower	32P		1	2	2	2
Directional reactive overpower	32Q/40		1	1	1	1
Field loss (underimpedance)	40			1	1	1
Phase undercurrent	37	1	1	1	1	1
Excessive starting time, locked rotor	48/51LR/14	1	1	1	1	1
Starts per hour	66	1	1	1	1	1
Loss of synchronization	78PS			1	1	1
Overspeed (2 set points) (2)	12					
Underspeed (2 set points)(2)	14					
Positive sequence undervoltage	27D		2	2	2	2
Remanent undervoltage	27R		1	2	2	2
Undervoltage (L-L or L-N)	27		2	4	4	4
Overvoltage (L-L or L-N)	59		2	4	4	4
Neutral voltage displacement	59N		2	2	2	2
Negative sequence overvoltage	47		1	2	2	2
Overfrequency	81H		2	2	2	2
Underfrequency	81L		4	4	4	4
Thermostat / Buchholz	26/63					
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T	8 RTDs	16 RTDs	16 RTDs	16 RTDs	16 RTDs


The figures indicate the number of units available for each protection function
■ standard, □ options.


(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.

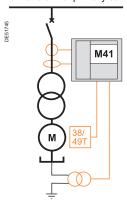
Motor protection

- internal motor fault protection
- power supply fault protection
- driven load fault protection
- RTD temperature monitoring (ANSI 38/49T).

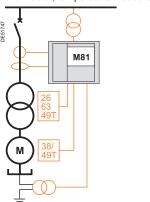

Motor-transformer unit protection

- motor and transformer protection against internal faults
- power supply fault protection
- driven load fault protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 38/49T).

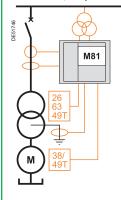
Motor-transformer unit protection without voltage monitoring: Sepam M20


■ transformer primary earth fault protection: 50G/51G.

Note: monitoring of motor insulation must be ensured by another device.


Motor-transformer unit protection with voltage monitoring: Sepam M41

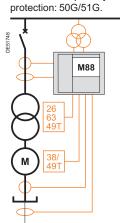
- motor earth fault protection: 59N
- transformer primary earth fault protection: 50G/51G.



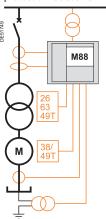
Motor-transformer unit protection with voltage and transformer monitoring: Sepam M81

- motor earth fault protection: 59N
- transformer primary earth fault protection: 50G/51G
- transformer monitoring: Buchholz, thermostat, temperature measurement.

- motor earth fault protection: 50G/51G
- transformer primary earth fault protection: 50G/51G
- transformer monitoring: Buchholz, thermostat, temperature measurement.



Motor applications


Motor-transformer unit differential protection: Sepam M88

Motor-transformer unit differential protection: 87T.

- motor earth fault protection: 50G/51G
- transformer primary earth fault

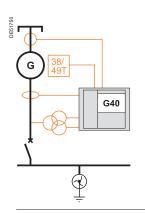
motor earth fault protection: 59N
 transformer primary earth fault protection: 50G/51G.

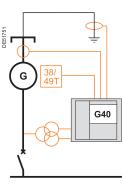
Protection functions	ANSI	G40	G82	G87	G88
	code				
Phase overcurrent ⁽¹⁾	50/51	4	8	8	8
Earth fault /	50N/51N	4	8	8	8
Sensitive earth fault ⁽¹⁾	50G/51G				
Breaker failure	50BF	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2
Thermal overload for machines (1)	49RMS	2	2	2	2
Restricted earth fault differential	64REF		2		2
Two-winding transformer differential	87T				1
Machine differential	87M			1	
Directional phase overcurrent ⁽¹⁾	67		2	2	2
Directional earth fault (1)	67N/67NC		2	2	2
Directional active overpower	32P	1	2	2	2
Directional reactive overpower	32Q/40	1	1	1	1
Directional active underpower	37P		2		
Field loss (underimpedance)	40		1	1	1
Loss of synchronization	78PS		1	1	1
Overspeed (2 set points)(2)	12				
Underspeed (2 set points)(2)	14				
Voltage-restrained phase	50V/51V	1	2	2	2
overcurrent					
Underimpedance	21B		1	1	1
Inadvertent energization	50/27		1	1	1
Third harmonic	27TN/64G2		2	2	2
undervoltage /	040				
100% stator earth fault	64G		_	_	_
Overfluxing (V / Hz)	24		2	2	2
Positive sequence undervoltage	27D		2	2	2
Remanent undervoltage	27R	_	2	2	2
Undervoltage (L-L or L-N)	27	2	4	4	4
Overvoltage (L-L or L-N)	59	2	4	4	4
Neutral voltage displacement	59N	2	2	2	2
Negative sequence overvoltage	47	1	2	2	2
Overfrequency	81H	2	2	2	2
Underfrequency	81L	4	4	4	4
Thermostat / Buchholz	26/63				
Temperature monitoring	38/49T				□ 16 RTDs
(16 RTDs) ⁽³⁾		16 RTDs	16 RTDs	16 RTDs	16 RTDS

The figures indicate the number of units available for each protection function

<sup>standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.</sup>

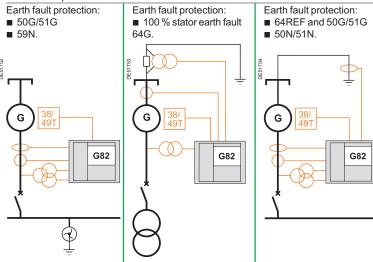
Generator protection

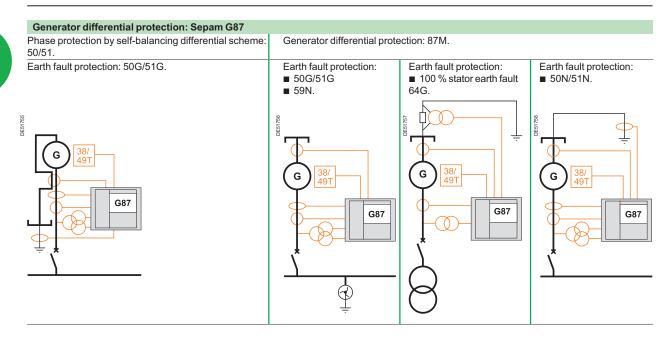

- internal generator fault protection
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.


Protection of a separate generator: Sepam G40

Earth fault protection:

- 50G/51G
- 59N.



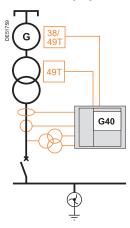

Protection of a generator coupled to other generators or to a network: Sepam $\mbox{G82}$

Short-circuit detection on generator side: 67.

Control fault protection.

Generator applications

Generator-transformer unit protection

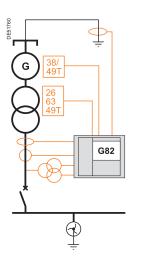

- generator and transformer protection against internal faults
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.

Separate generator-transformer unit protection. Sepam G40

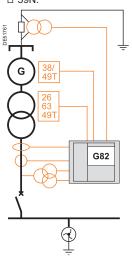
Earth fault protection:

■ 50G/51G.

Note: monitoring of generator insulation must be ensured by another device.

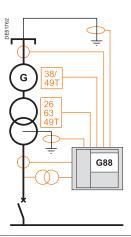

Protection of a generator-transformer unit coupled to other generators or to a network: Sepam G82

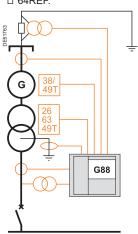
Short-circuit detection on generator side: 67.


Control fault protection.

Internal transformer protection: Thermostat / Buchholz (ANSI 26/63).

- generator earth fault protection: 50G/51G
- transformer secondary earth fault protection:
- _ 50G/51G
- □ 59N.


- generator earth fault protection: 100 % stator earth fault 64G
- transformer secondary earth fault protection:
- _ 50G/51G
- □ 59N.

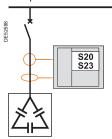

Generator-transformer unit differential protection: Sepam G88

Generator-transformer unit differential protection: 87T.

- generator earth fault protection: 50G/51G
- transformer secondary earth fault protection:
- □ 50G/51G.

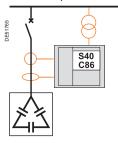
- generator earth fault protection: 100% stator earth fault 64G
- transformer secondary earth fault protection:
- protection: □ 50G/51G
- □ 64REF.

Protection functions	ANSI code	S20	S23	S40	C86
Phase overcurrent ⁽¹⁾	50/51	4	4	4	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G	4	4	4	8
Breaker failure	50BF		1	1	1
Negative sequence / unbalance	46	1	1	2	2
Thermal overload for capacitors (1)	49RMS				2
Capacitor-bank unbalance	51C				8
Positive sequence undervoltage	27D				2
Remanent undervoltage	27R				2
Undervoltage (L-L or L-N)	27			2	4
Overvoltage (L-L or L-N)	59			2	4
Neutral voltage displacement	59N			2	2
Negative sequence overvoltage	47			1	2
Overfrequency	81H			2	2
Underfrequency	81L			4	4
Temperature monitoring (16 RTDs) ⁽²⁾	38/49T				□ 16 RTDs

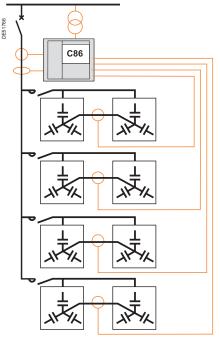

The figures indicate the number of units available for each protection function ■ standard, □ options.

(1) Protection functions with 2 groups of settings.
(2) With optional MET148-2 temperature input modules.

Capacitor bank protection

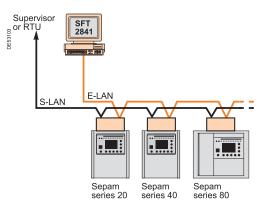

Protection of a capacitor bank (delta connection) without voltage monitoring: Sepam S20, S23 $\,$

■ capacitor bank short-circuit protection.


Protection of a capacitor bank (delta connection) with voltage monitoring: Sepam S40 or C86 $\,$

- capacitor bank short-circuit protection
- voltage and frequency monitoring
- overload protection: ANSI 49RMS (Sepam C86 only).

Protection of a double-star connected capacitor bank with 1 to 4 steps: Sepam C86


- capacitor bank short-circuit protection
- voltage and frequency monitoring
- specific overload protection, self-adapted to the number of connected steps
- unbalance protection: 51C.

Communication networks and protocols

1

All Sepam relays communicate and can be integrated in a communication architecture. All Sepam information can be accessed remotely.

Sepam connection to two communication networks (S-LAN and E-LAN).

Two types of communication network

Sepam relays can be connected to two types of networks, thus providing access to different types of information:

- a supervisory local area network or S-LAN
- an engineering local area network or E-LAN.

Examples of communication architectures are presented on pages 37 to 39.

Supervisory local area network (S-LAN)

An S-LAN is used for supervision functions concerning the installation and the electric network. It can be used to connect a set of communicating devices using the same communication protocol to a centralized supervision system.

Sepam can be connected to an S-LAN using one of the following communication protocols:

- Modbus RTU
- Modbus TCP/IP
- DNP3
- IEC 60870-5-103
- IEC 61850

Engineering local area network (E-LAN)

An E-LAN is intended for Sepam parameter-setting and operating functions. It can be used to connect a set of Sepam units to a PC running the SFT2841 software. In this configuration, the operator has remote and centralized access to all Sepam information, with no need to develop any special communication software. The operator can easily:

- set up the Sepam general parameters and functions
- collect all Sepam operating and diagnostics information
- manage the protection system for the electric network
- monitor the status of the electric network
- run diagnostics on any incidents affecting the electric network.

Communication protocols

Modbus RTU

Modbus RTU is a data-transmission protocol, a de facto standard since 1979 widely used in industry and accepted by many communicating devices.

For more information on the Modbus RTU protocol, visit www.modbus.org.

Modbus TCP/IP

The Modbus TCP/IP communication protocol offers the same functions as Modbus RTU as well as compatibility with multi-master architectures

DNP3

DNP3 is a data-transmission protocol specially suited to the needs of distributors for remote control/monitoring of substations in the electric network. For more information on the DNP3 protocol, visit www.dnp.org.

IEC 60870-5-103

IEC 60870-5-103 is an accompanying standard for the standards in the IEC 60870-5 series. It defines communication between protection devices and the various devices in a control system (supervisor or RTU) in a substation. For more information on the IEC 60870-5-103 protocol, visit www.iec.ch.

IEC 61850

The standards in the IEC 61850 series define a protocol for communication in electrical substations. The Ethernet-based protocol offers advanced characteristics and interoperability between multi-vendor devices.

The Sepam relay handles the station bus, in compliance with standards IEC 61850-6, 7-1, 7-2, 7-3, 7-4 and 8-1.

For more information on the IEC 61850 protocol, visit www.iec.ch.

Communication networks and protocols

Other protocols

A gateway / protocol converter must be used to connect Sepam to a communication network based on other protocols.

IEC 60870-5-101

The CN1000 gateway developed by EuroSystem enables Sepam connection to IEC 60870-5-101 networks.

This gateway is quick and simple to implement using the supplied configuration software integrating all Sepam parameters.

For more information on the CN1000 gateway, visit www.euro-system.fr.

Implementation

A complete range of Sepam communication interfaces

Access to Sepam information via a web browser.

Sepam communication interfaces

A complete range of accessories

Sepam connects to a communication network via a communication interface. Selection of the interface depends on the communication architecture:

- number of networks to be connected:
- □ 1 network, S-LAN or E-LAN
- ☐ 2 networks, S-LAN and E-LAN
- communication protocol selected for the S-LAN: Modbus RTU, DNP3, IEC 60870-5-103 or IEC 61850
- network physical interface:
- □ 2-wire or 4-wire RS485

- ☐ fiber optic, with star or ring architecture.

Sepam communication interfaces are presented in detail on page 179.

Direct Sepam connection to the Ethernet network

Sepam series 40 and Sepam series 80 units can be directly connected to the Ethernet network via the ACE 850 communication interface. In this way they make full use of Ethernet network performance and all IEC 61850 functions.

- Compatible communication protocols: Modbus TCP/IP, IEC 61850
- Network physical interface:
- □ 10 baseT /100 base TX (star architecture)
- □ 100 base FX (star architecture).

Easy implementation

The communication interfaces are remote modules that are easy to install and connect

The SFT2841 software is used for complete setup of the communication interfaces:

- protocol selection and setup of the functions specific to each protocol
- setup of the physical interface.

Advanced configuration of IEC 61850 protocol

The SFT850 software is used for advanced configuration of the IEC 61850 protocol for both the ECI850 server and the ACE850 communication interface:

- complete Sepam-configuration database (.icd)
- processing of system-configuration files (.scd)
- creation and processing of ECI850 and ACE850 configuration files (.cid).

Sepam IEC 61850 level 1 server

The entire Sepam range can be connected to an IEC 61850 (level 1) system via the Sepam ECI850 server, representing the most economical solution. Level 1 allows:

- upgrading of existing IEC 61850 Modbus installations on a single Ethernet port
- supervision of electrical characteristics and Sepam status
- circuit breaker control
- time-stamping, synchronisation via SNTP, network diagnostics and disturbance

The server also ensures compatibility with the E-LAN network.

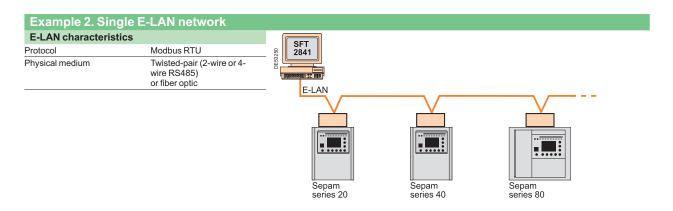
Ethernet gateways in a Modbus environment

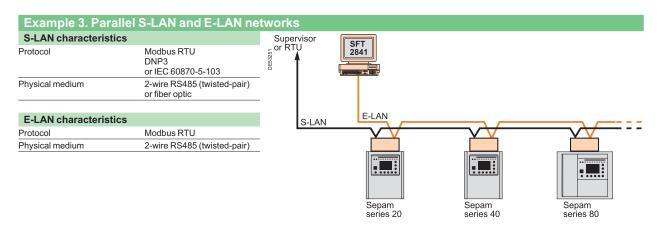
Sepam can be connected to an Ethernet TCP/IP network in a totally transparent manner via the EGX100 gateway or the EGX400 server.

EGX100 gateway

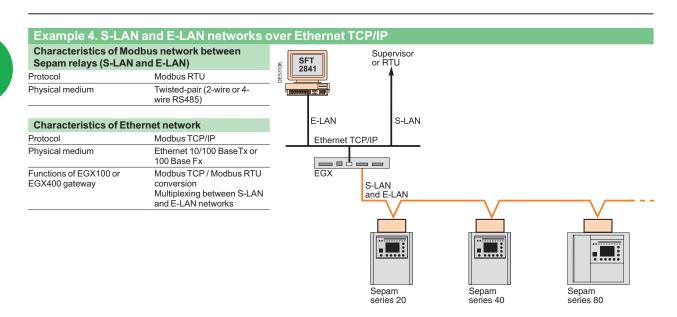
The EGX100 offers access to enhanced communication and multi-master architectures. It provides IP (Internet Protocol) connection for communication on all types of networks, notably intranets and internet.

EGX400 server

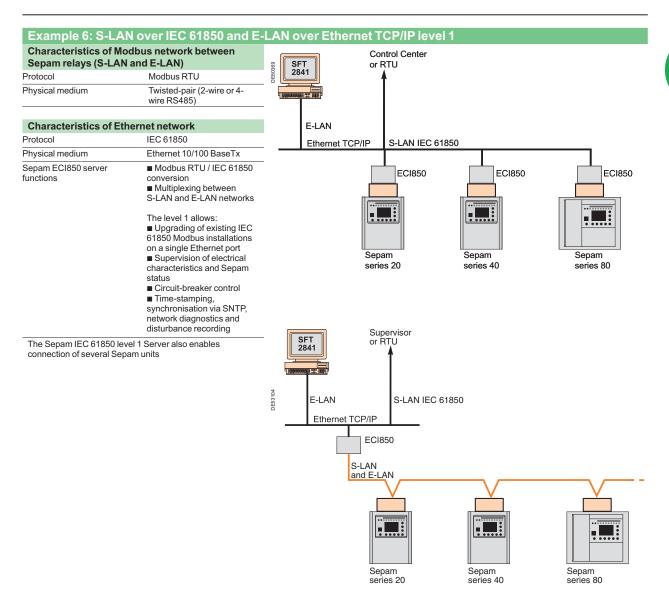

In addition to Ethernet TCP/IP connection, the EGX400 offers a web server and HTML pages designed specially to present the essential Sepam information. This information may be accessed in clear text and at no risk on any PC connected to the intranet/internet and equipped with a web browser.


Seven typical communication architectures are presented in the examples below. Each architecture is presented with:

- a simplified diagram
- the characteristics of the implemented networks.


The physical architecture of the communication networks and the connection to networks depends on the type of network (RS485 or fiber optic) and the communication interfaces used. Sepam communication interfaces are presented in detail on page 160.

Example 1. Single S-LAN network S-LAN characteristics Protocol Modbus RTU DNP3 or IEC 60870-5-103 Physical medium Twisted-pair (2-wire or 4-wire RS485) or fiber optic Sepam Sepam Sepam Sepam Series 20 Sepam Series 80



Examples of architectures

Example 5. Two parallel S-LAN networks (Sepam series 80) Supervisor 1 or RTU1 S-LAN characteristics Protocol Modbus RTU DNP3 Supervisor 2 or RTU2 or IEC 60870-5-103 Twisted-pair (2-wire or 4-wire RS485) Physical medium or fiber optic Note: the two communication ports on Sepam series 80 can also be used to create two redundant S-LANs connected to a single supervisor/RTU. S-LAN An E-LAN can be added to the two S-LANs. Sepam series 80 Sepam series 80 Sepam series 80

Examples of architectures

Example 7: S-LAN over IEC 61850 and E-LAN over Ethernet TCP/IP (Sepam series 40 and series 80) level 2

Characteristics of Ethernet network IEC 61850 GOOSE messages IEC 61850 GOOSE messages allows peer-to-peer communication between protection devices Physical medium Ethernet 10/100 BaseTx or in a standardized way. 100 Base Fx Sepam series 80 with ACE850 communication module supports GOOSE messages Functions supported ■ Level 1 functions ■ Dual port Ethernet for ■ improved system protection: redundancy on series 40 □ logic discrimination and series 80 (star or ring □ inter-tripping connection) ■ improved system control: ■ GOOSE messaging service on series 80 only □ user-defined Logipam contacts.

Note: contact your local support centre for more information about this offer

High level of performance and security of these messages is ensured by:

- use of fiber optic data link
- use of IEC 61850 compatible managed switches Ethernet
- selection of a fault-tolerant communication architecture.

Available Sepam data Selection table

	Modbus RTU D		DNP3			IEC 60870-5-103		103	IEC (61850		
	series 20	series 40	series 80	series 20	series 40	series 80	series 20	series 40	series 80	ECI85	60 ⁽¹⁾ series 40	serie:
Data transmitted f	rom Se	pam to	the sup	ervisor								
Metering and diagnosis	s											
Measurements	-				•	•			•			•
Energy												
Network diagnosis	-									(2)	(2)	(2)
Machine diagnosis										(2)	(2)	(2)
Switchgear diagnosis										(2)	(2)	(2)
Sepam diagnosis									-	•		
ogipam counters												
Remote indications												
Alarms and internal status conditions	•	•	•	•	•	•	•	•	•	(2)	(2)	(2)
ogic inputs										(2)	(2)	(2)
ogic outputs		•	-							(2)	(2)	(2)
ogic equations		•	-						•		•	•
Data transmitted f	rom the	super	visor to	Sepam								
Pulse-type remote-control orders, in direct mode	•	•	•	•	•	•	•	•	•	(2)	(2)	(2)
Pulse-type remote-control orders, in "Select Before Operate" mode	•	•	•		•	•				(2)	(2)	(2)
//aintained remote-control orders (for Logipam)			•								•	•
Remote control security												
Data accessible vi	a spec	ial func	tions									
Time-tagging												
ime-tagged events											-	•
Insollicited events												
ime-setting and	•	•	•	•	•	•	•	•	•	•	•	•
Remote setting												
Selection of the protection- setting group	•	•	•	•	•	•	•	•	•		•	•
Reading/writing of protection settings	•	•	•									
Reading of general parameters	•	•	•									
Reading/writing of analog utput (MSA141)	•	•	•	•	•	•					•	•
Network diagnosis												
ransfer of disturbance- ecording data	•	•	•	•	•	•	•	•	•	•	•	•
ripping contexts									•		(2)	(2)
Out-of-sync context			-								(2)	(2)
Miscellaneous												
lentification of Sepam					•	•						

⁽¹⁾ To or from the Sepam series 80, series 40 and series 20 units, depending on the case. (2) Depending on the modelling of the IEC 61850 logic nodes.

Description

Data transmitted from Sepam to the supervisor

Metering and diagnosis

The values measured by Sepam that may be remote accessed are divided into the following categories:

- measurements: currents, voltages, frequency, power, temperatures, etc.
- energy: calculated or pulse-type energy counters
- network diagnosis: phase displacement, tripping currents, unbalance ratio, etc.
- machine diagnosis: temperature rise, motor starting time, remaining operating time before overload tripping, waiting time after tripping, etc.
- switchgear diagnosis: cumulative breaking current, operating time and number of operations, circuit breaker charging time, etc.
- Sepam diagnosis: partial or major fault, etc.
- Logipam counters.

Remote indications

The logic-state information that may be remote accessed are divided into the following categories:

- alarms and internal status conditions
- status of logic inputs
- status of logic outputs
- status of nine LEDs on the front panel of Sepam
- status of logic-equation output bits.

Alarms and internal status conditions

The alarms and internal status conditions are remote indications (TS) pre-assigned to protection and control functions.

Remote indications depend on the type of Sepam and can be re-assigned by Logipam.

The remote indications that can be accessed via the communication link include:

- all protection-function alarms
- monitoring-function alarms: CT or VT fault, control fault
- Sepam status data:
- □ Sepam not reset
- $\hfill \square$ remote setting inhibited, remote-control orders inhibited
- status data on the following functions:
- $\hfill \square$ recloser: in service / inhibited, reclosing in progress / successful, permanent trip
- $\hfill \square$ disturbance recording: records inhibited / stored.

Data transmitted from the supervisor to Sepam

Pulse-type remote-control orders

Pulse-type remote-control orders (TC) may be carried out in two modes (selected by parameter setting):

- direct mode
- confirmed SBO (select before operate) mode.

Remote-control orders are pre-assigned to metering, protection and control functions and depend on the type of Sepam.

They are used for the following, in particular:

- to control breaking device opening and closing
- to reset Sepam and initialize peak-demand measurements
- to select the active group of settings by enabling group A or B
- to inhibit or enable the following functions: recloser, thermal overload protection, disturbance recording.

Remote-control orders can be re-assigned by Logipam.

Remote-control security

Transmission of Sepam series 80 remote controls and settings over a Modbus S-LAN can be password protected.

Description

IEC 61850 logical nodesSepam supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node depends on the application.

Nodes		Sepam series 20	Sepam series 20	Sepam series 40	Sepam series 80
		Busbar	Others		
L: system	logical nodes				
LPHD	Physical device information				
LLN0	Logical node zero				•
P: logical	nodes for protection functions				
PDIF	Differential				•
PDOP	Directional overpower				•
PDUP	Directional underpower				•
PFRC	Rate of change of frequency				•
PHIZ	Ground detector				•
PMRI	Motor restart inhibition		•		•
PMSS	Motor starting time supervision		•		•
PSDE	Sensitive directional earth fault				•
PTOC	Time overcurrent		•		•
PTOF	Overfrequency				•
PTOV	Overvoltage				•
PTRC	Protection trip conditioning		•		•
PTTR	Thermal overload		•	•	
PTUC	Undercurrent		•		•
PTUV	Undervoltage				•
PTUF	Underfrequency	•		•	
PVOC	Voltage controlled time overcurrent			•	
PVPH	Volts per Hz				
PZSU	Zero speed or underspeed				
R: logical	nodes for protection related functions				
RBRF	Breaker failure		•	•	•
RREC	Autoreclosing		•		
RSYN	Synchronism-check or synchronizing				
C: logical	nodes for control				
CSWI	Switch controller	•			•
GG: logic	al nodes for generic references				
GGIO	Generic process I/O				•
	I nodes for metering and measurement				
MHAI	Harmonics or interharmonics				
MMTR	Metering	•	•	•	•
MMXU	Measurement	•	•	•	•
MSQI	Sequence and imbalance	•		•	•
MSTA	Metering statistics		•	•	
	nodes for switchgear				
XCBR	Circuit breaker				
	nodes for further power system equipment				
ZCAP	Capacitor bank				
LUAP	Capacitor Dalik				-

Description

Time-tagging

Time-tagged events

The time-tagging function assigns a date and precise time to status changes (events) so that they can be accurately organized over time.

Sepam systematically time-tags the following events:

- status changes of all logic inputs
- status changes of all remote indications (TS alarms and internal status conditions).

Each event is time-tagged to within one millisecond.

The number of stacks of time-tagged events managed by Sepam on each communication port and the volume of each stack in terms of the numbers of events depend on the communication protocol used.

	Modbus RTU	DNP3	IEC 60870-5-103	IEC 61850
Number of event stacks for each Sepam communication port	2	1	1	Depending on configuration
Number of events per stack	64	100	100	Depending on configuration

Whatever the communication protocol used, Modbus RTU, DNP3, IEC 60870-5-103 or IEC 61850 events may be used by a remote monitoring and control system for data logging and histories, for example.

Unsollicited events

Using the DNP3 and IEC 61850 protocols, Sepam can spontaneously transmit time-tagged events to the supervisor. The transmission of unsollicited events must be activated during setup.

Time-setting and synchronization

The Sepam internal clock manages the date and time.

Time-setting is possible:

- via the Sepam display
- using the SFT2841 software
- via the communication link.

To ensure long-term time stability or to coordinate a number of devices, Sepam units can be synchronized:

- by an external pulse to a dedicated logic input
- via the communication link.

Description

1

Remote setting

Sepam parameter and protection settings

The following remote-setting functions are available:

- selection of the protection-setting group
- reading of general parameters
- reading of protection settings (remote reading)
- writing of protection settings (remote setting).

The writing of protection settings may be inhibited by parameter setting.

S-LAN and E-LAN networks

The availability of remote-setting functions over the S-LAN depends on the communication protocol used.

All remote-setting functions are available over the E-LAN using the SFT2841 software

Other data accessible via special functions

Network diagnosis

The network diagnostic information recorded in files by Sepam can also be transmitted over the communication link:

- disturbance-recording records in COMTRADE format
- tripping contexts
- Out-of-sync context.

Identification of Sepam

The identification function enables the supervisor to clearly identify the device connected to the S-LAN, based on the following elements of information:

- manufacturer identification
- Sepam type.

This function is available for all Sepam relays, whatever the protocol used.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to:

- complete library: technical documents, catalogs, FAQs, brochures...
- selection guides from the e-catalog.
- product discovery sites and their Flash animations.
 You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.

Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Sepam series 20 Sepam series 40 Sepam series 80

Sepam series 20 and Sepam series 40

Range description	3
Sepam Series 20 - Sepam series 40	48
Selection table Sepam series 20	48
Selection table Sepam series 40	49
Sensor inputs	50
General settings	51
Metering and diagnosis	52
Description	52
Characteristics	55
Protection	56
Description	56
Main characteristics Setting ranges	60 61
	64
Control and monitoring Description	64
Description of predefined functions	65
Adaptation of predefined functions using the SFT2841 software	67
Characteristics	68
Base unit	68
Presentation	68
Dimensions	71
Description To be in a boundaries in a second seco	72
Technical characteristics Environmental characteristics	74 75
Environmental characteristics	, 3
Connection diagrams	76
Base unit	76
Sepam series 20	76
Sepam series 40	77
Other phase current input connection schemes	78 79
Other residual current input connection schemes	79
Voltage inputs	81
Sepam series 20	81
Sepam series 40	82
Sepam series 80	85
Additional modules and accessories	139
Order form	217
Index	227

Selection table Sepam series 20

		Substat	ion	Transfo	rmer	Motor	Busbar	
Protection	ANSI code	S20	S23	T20	T23	M20	B21 (3)	B22
Phase overcurrent	50/51	4	4	4	4	4		
Earth fault / Sensitive earth fault	50N/51N 50G/51G	4	4	4	4	4		
Breaker failure	50BF		1		1			
legative sequence / unbalance	46	1	1	1	1	1		
hermal overload	49RMS			2	2	2		
Phase undercurrent	37					1		
Excessive starting time, locked rotor	48/51LR/14					1		
Starts per hour	66					1		
Positive sequence undervoltage	27D/47						2	2
Remanent undervoltage	27R						1	1
Phase-to-phase undervoltage	27						2	2
Phase-to-neutral undervoltage	27S						1	1
Phase-to-phase overvoltage	59						2	2
Neutral voltage displacement	59N						2	2
Overfrequency	81H						1	1
Inderfrequency	81L						2	2
Rate of change of frequency	81R							1
Recloser (4 cycles)	79							
Thermostat / Buchholz	26/63							
emperature monitoring (8 RTDs)	38/49T							
Metering								
Phase current I1, I2, I3 RMS, residual curre	nt I0							
Demand current I1, I2, I3, peak demand cur	rent IM1, IM2, IM3				-	-		
oltage U21, U32, U13, V1, V2, V3, residua	l voltage V0							
Positive sequence voltage Vd / rotation dire	ction							
- requency								
Temperature								
Network and machine diagr	nosis							
Fripping current Tripl1, Tripl2, Tripl3, Tripl0								
Jnbalance ratio / negative sequence currer	nt li				-			
Disturbance recording								
Thermal capacity used							_	
Remaining operating time before overload t	ripping				-			
Vaiting time after overload tripping	- 11 0				_			
Running hours counter / operating time					•			
Starting current and time								
Start inhibit time						_		
Number of starts before inhibition						•		
Switchgear diagnosis								
Cumulative breaking current								
Frip circuit supervision								
Number of operations, operating time, charge	ging time							
Control and monitoring	ANSI code							
Circuit breaker / contactor control (1)	94/69							
Latching / acknowledgement	86			-	•		-	
Logic discrimination	68	_		-		_	_	-
Switching of groups of settings		(2)	(2)	(2)	(2)	(2)		
Annunciation	30				• • • • • • • • • • • • • • • • • • • •			
Additional modules			_					_
	- 4							
temperature sensor inputs - MET148-2 m						_		
I low level analog output - MSA141 module								
Logic inputs/outputs - MES114/MES114E/MES114F (10I/4O) mod	dule							
Communication interface - ACE949-2, ACE959, ACE937, ACE969TP-	2 or ACE969FO-2							

[■] standard, □ according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options.

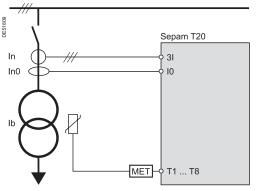
⁽¹⁾ For shunt trip unit or undervoltage trip unit.
(2) Exclusive choice between logic discrimination and switching from one 2-relay group of settings to another 2-relay group.
(3) Performs Sepam B20 functions.

Selection table Sepam series 40

		Subst	ation			Transf	ormer	Motor	Generate
Protection	ANSI code	S40	S41	S42	S43	T40	T42	M41	G40
Phase overcurrent	50/51	4	4	4	4	4	4	4	4
oltage-restrained overcurrent	50V/51V					-		7	1
arth fault / Sensitive earth fault	50N/51N 50G/51G	4	4	4	4	4	4	4	4
reaker failure	50BF	1	1	1	1	1	1	1	1
legative sequence / unbalance	46	2	2	2	2	2	2	2	2
irectional phase overcurrent	67			2			2		
irectional earth fault	67N/67NC		2	2	2		2	2	
birectional active overpower	32P		1	1	1			1	1
lirectional reactive overpower	32Q/40					0		1	1
hermal overload hase undercurrent	49RMS					2	2	2	2
excessive starting time, locked rotor	37 48/51LR/14					_		1	
Starts per hour	66							1	
ositive sequence undervoltage	27D							2	
Remanent undervoltage	27R							1	
Indervoltage (3)	27/27S	2	2	2		2	2	2	2
Overvoltage (3)	59	2	2	2		2	2	2	2
leutral voltage displacement	59N	2	2	2		2	2	2	2
legative sequence overvoltage	47	1	1	1		1	1	1	1
Overfrequency	81H	2	2	2		2	2	2	2
Inderfrequency	81L	4	4	4		4	4	4	4
Recloser (4 cycles)	79					_			
emperature monitoring (8 or 16 RTDs) Thermostat / Buchholz	38/49T 26/63								
	20/03					П	Ц		
Metering									
hase current I1, I2, I3 RMS, residual current I0	10	•	-	-	•				•
emand current I1, I2, I3, peak demand current IM1, IM2, IV	13	-		•	-		-	-	•
oltage U21, U32, U13, V1, V2, V3, residual voltage V0 ositive sequence voltage Vd / rotation direction		-	-	-	-		-	•	•
legative sequence voltage Vi									
requency		-							
active, reactive and apparent power P, Q, S		-	-	•				-	•
Peak demand power PM, QM, power factor			•	-	-		•	•	•
Calculated active and reactive energy (±W.h, ±var.h)									
ctive and reactive energy by pulse counting (±W.h, ±.varh)									
emperature									
Network and machine diagnosis									
ripping context									
ripping current Tripl1, Tripl2, Tripl3, Tripl0									
Inbalance ratio / negative sequence current li		•	-	-	•			•	•
Phase displacement φ0, φ1, φ2, φ3			-	-	-				•
Disturbance recording		•	•	-	-		-	•	•
Thermal capacity used Remaining operating time before overload tripping							-	•	:
Vaiting time after overload tripping							•	•	:
Running hours counter / operating time							-	•	
starting current and time									_
tart inhibit time, number of starts before inhibition									
Switchgear diagnosis									
umulative breaking current									
rip circuit supervision						_		_	_
lumber of operations, operating time, charging time									
T/VT supervision	60FL								
Control and monitoring	ANSI code								
circuit breaker / contactor control (1)	94/69	-							
atching / acknowledgement	86		-		-		-		•
ogic discrimination	68								
witching of groups of settings									
nnunciation	30								
ogic equation editor		-							
Additional modules									
temperature sensor inputs - MET148-2 module (2)									
low level analog output - MSA141 module						0			
ogic inputs/outputs - IES114/MES114E/MES114F (10I/4O) module					0				
EST14/MEST14E/MEST14F (101/40) Module									

[■] standard, □ according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options.

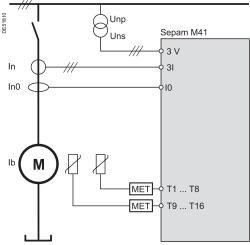
(1) For shunt trip unit or undervoltage trip unit.


(2) 2 modules possible.

(3) Exclusive choice, phase-to-neutral voltage or phase-to-phase voltage for each of the 2 relays.

Each Sepam series 20 or Sepam series 40 has analog inputs that are connected to the measurement sensors required for the application.

Sepam series 20 sensor inputs


	S20, S23	T20, T23, M20	B21, B22
Phase current inputs	3	3	0
Residual current input	1	1	0
Phase voltage inputs	0	0	3
Residual voltage input	0	0	1
Temperature inputs (on MET148-2 module)	0	8	0

Sepam T20 sensor inputs.

Sepam series 40 sensor inputs

	S40 S42	, S41,	T40, T42, M41, G40		
Phase current inputs	3		3		
Residual current input	1		1		
Phase voltage inputs	2	3	2	3	
Residual voltage input	1	0	1	0	
Temperature inputs (on MET148-2 module)	0		2 x 8		

Sepam M41 sensor inputs.

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	eral settings	Selection	Sepam series 20	Sepam series 40
In	Rated phase current	2 or 3 CT 1 A / 5 A	1 A to 6250 A	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A (1)	25 A to 3150 A ⁽¹⁾
lb	Base current, according to rated power of equipment		0.4 to 1.3 ln	0.4 to 1.3 ln
ln0	Rated residual current	Sum of 3 phase currents	See In rated phase current	See In rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating	2A, 5A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A	1 A to 6250 A (In0 = In)
		1 A/5 A CT + CSH30 interposing ring CT Sensitivity x10	-	1 A to 6250 A (In0 = In/10)
		Core balance CT + ACE990 (the core balance CT ratio 1/n must be such that 50 < n < 1500)	According to current monitored and use of ACE990	According to current monitored and use of ACE990
Unp	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/√3)		220 V to 250 kV	220 V to 250 kV
Uns	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	100, 110, 115, 120, 200, 230 V	100, 110, 115, 120, 200, 230 V
		2 VTs: U21, U32	100, 110, 115, 120 V	100, 110, 115, 120 V
		1 VT: V1	100, 110, 115, 120 V	100, 110, 115, 120 V
Uns0	Secondary zero sequence voltage for primary zero sequence voltage Unp/√3		Uns/3 or Uns/√3	Uns/3 or Uns/√3
	Rated frequency		50 Hz or 60 Hz	50 Hz or 60 Hz
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 mn	5, 10, 15, 30, 60 mn
	Pulse-type accumulated energy meter	Increments active energy		0.1 kW.h to 5 MW.h
		Increments reactive energy	-	0.1 kvar.h to 5 Mvar.h

⁽¹⁾ In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Metering and diagnosis

Description

Metering

Sepam is a precision metering unit.

All the metering and diagnosis data used for commissioning and required for the operation and maintenance of your equipment are available locally or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13. Different types of sensors may be used to meter phase current:

- 1 A or 5 A current transformers
- LPCT type current sensors.

Residual current

Two residual current values are available depending on the type of Sepam and sensors connected to it:

- residual currents IOS, calculated by the vector sum of the 3 phase currents
- measured residual current I0.

Different types of sensors may be used to measure residual current:

- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer
- any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

- demand current is calculated over an adjustable period of 5 to 60 minutes
- peak demand current is the greatest demand current and indicates the current drawn by peak loads.

Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3
- phase-to-phase voltages U21, U32, U13
- residual voltage V0
- positive sequence voltage Vd and negative sequence voltage Vi
- frequency f.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos j).

Power calculations is based on the 2 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current.

The peak demand powers may be cleared.

Energy

- 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions
- 1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Metering and diagnosis Description

Machine diagnosis

Sepam assists facility managers by providing:

- data on the operation of their machines
- predictive data to optimize process management
- useful data to facilitate protection function setting and implementation.

Thermal capacity used

assistance

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function. Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function.

The time is used by facility managers to optimize process management in real time by deciding to:

- interrupt according to procedures
- continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function.

Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb.

Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over

- 1.2 lb. For each start / overload, Sepam stores:
- maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V0, Vi, Vd, f, P and Q values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3, indicating the degree of unbalance in the power supplied to the protected equipment.

Phase displacement

- phase displacement j1, j2, j3 between phase currents l1, l2, l3 and voltages V1, V2, V3 respectively
- phase displacement j0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs
- logic data: pick-up, ...

Characteristics	Sepam series 20	Sepam series 40
Number of recordings in COMTRADE format	2	Adjustable from 1 to 19
Total duration of a recording	86 periods (1.72 s at 50 Hz, 1.43 s at 60 Hz)	Adjustable from 1 to 10 s. The total of all the records plus one must not be more than 20 s at 50 Hz and 16 s at 60 Hz
Number of samples per period	12	12
Duration of recording prior to occurrence of the event	Adjustable from 0 to 86 periods	Adjustable from 0 to 99 periods
Recorded data	currents or voltageslogic inputspick uplogic output O1.	 currents or voltages logic inputs pick up logic outputs O1 to O4.

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

- detect internal failures that may cause nuisance tripping or failed fault tripping
- put Sepam in fail-safe position to avoid any unwanted operation
- alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored:

major failures: Sepam shutdown (to fail-safe position).

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

■ minor failures: downgraded Sepam operation. Sepam's main functions are operational and equipment protection is ensured.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly. The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions.

The data are to be compared to switchgear manufacturer data.

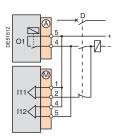
ANSI 60/60FL - CT/VT supervision

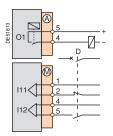
Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.

Monitoring includes:

- consistency checking of currents and voltages measured
- acquisition of phase or residual voltage transformer protection fuse blown contacts.


In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.


ANSI 74 - Trip circuit supervision

To detect trip circuit circuit failures, Sepam monitors:

- shunt trip coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.

The trip circuit is only supervised when connected as shown below.

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring.

Cumulative breaking current

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
 cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 ln.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current.

Cumulative breaking current is given in (kA)2.

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time

Used to assess the condition of the breaking device operating mechanism.

Metering and diagnosis Characteristics

Functions <u>Measurement</u> Accuracy (1) Accuracy (1) **MSA141** Saving Sepam series 20 Sepam series 40 range Metering 0.1 to 40 In (3) ±0.5 % Phase current ±1% Residual current Calculated 0.1 to 40 In ±1% ±1% Measured 0.1 to 20 In0 ±1 % ±1 % Demand current 0.1 to 40 In ±1 % ±0.5 % 0.1 to 40 In Peak demand current ±1 % ±0.5 % П Phase-to-phase voltage 0.05 to 1.2 Unp ±1% ±0.5% 0.05 to 1.2 Vnp Phase-to-neutral voltage ±1% ±0.5% Residual voltage 0.015 to 3 Vnp ±1 % ±1 % Positive sequence voltage 0.05 to 1.2 Vnp ±5 % ±2 % Negative sequence voltage 0.05 to 1,2 Vnp ±2 % ±0.05 Hz Frequency Sepam series 20 50 ± 5 Hz or 60 ± 5 Hz Frequency Sepam series 40 25 to 65 Hz ±0.02 Hz Active power 0.015 Sn⁽²⁾ to 999 MW ±1% 0.015 Sn⁽²⁾ to 999 Mvar ±1 % Reactive power Apparent power 0.015 Sn⁽²⁾ to 999 MVA ±1 % 0.015 Sn⁽²⁾ to 999 MW Peak demand active power ±1% 0.015 Sn⁽²⁾ to 999 Mvar ±1 % Peak demand reactive power -1 to +1 (CAP/IND) Power factor ±1 % Calculated active energy 0 to 2.1.108 MW.h ±1 % ±1 digit П Calculated reactive energy 0 to 2.1.108 Mvar.h ±1 % ±1 digit -30 to +200 °C ±1 °C from +20 to +140 °C ±1 °C from +20 to +140 °C Temperature or -22 to +392 °F Network diagnosis assistance Tripping context Phase tripping current 0.1 to 40 In ±5 % ±5 % Earth fault tripping current 0.1 to 20 In0 ±5 % ±5% 10 to 500 % of lb ±2 % ±2 % Negative sequence / unbalance Phase displacement φ0 (between V0 and I0) 0 to 359° ±2° Phase displacement φ1, φ2, φ3 0 to 359° ±2° (between V and I) Machine operating assistance Thermal capacity used 0 to 800 % ±1% ±1% (100 % for I phase = Ib) Remaining operating time before overload 0 to 999 mn ±1 mn ±1 mn Waiting time after overload tripping 0 to 999 mn ±1 mn ±1 mn Running hours counter / operating time 0 to 65535 hours ±1 % or ±0.5 h ±1 % or ±0.5 h Starting current 1.2 lb to 24 ln ±5 % ±5 % 0 to 300 s ±300 ms ±300 ms Starting time Number of starts before inhibition 0 to 60 Start inhibit time 0 to 360 mn ±1 mn ±1 mn Cooling time constant 5 to 600 mn ±5 mn Switchgear diagnosis assistance 0 to 65535 kA² Cumulative breaking current ±10 % ±10 %

±1 ms

±0.5 s

±1 ms

±0.5 s

0 to 4.10⁹

1 to 20 s

20 to 100 ms

Number of operations Operating time

Charging time

[■] available on MSA141 analog output module, according to setup.

[□] saved in the event of auxiliary supply outage

⁽¹⁾ Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cosj > 0.8. (2) Sn: apparent power, = √3. Unp. In.

⁽³⁾ Measurement up to 0.02 In for information purpose.

Description

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection, sensitive to the highest phase current measured.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold

With Sepam series 40, tripping can be confirmed or unconfirmed, according to parameter setting:

- unconfirmed tripping: standard
- tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant 2-phase short-circuits
- tripping confirmed by undervoltage protection (ANSI 27, unit 1), as backup for phase-to-phase short-circuits in networks with low short-circuit power.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values:

- ANSI 50N/51N: residual current calculated or measured by 3 phase current sensors
- ANSI 50G/51G: residual current measured directly by a specific sensor.

Characteristics

- 2 groups of settings
- Definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold
- second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current:

- sensitive protection to detect 2-phase faults at the ends of long lines
- protection of equipment against temperature build-up, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristics

- Sepam series 20:
- □ 1 definite time (DT) curve
- □ 1 specific Schneider IDMT curve.
- Sepam series 40:
- □ 1 definite time (DT) curve
- □ 7 IDMT curves: 3 IEC curves, 3 IEEE curves and 1 specific Schneider curve.

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on machines (transformers, motors or generators).

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point
- adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves
- equipment heating and cooling time constants

With Sepam series 40, the cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semipermanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed. Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

- 1 to 4 reclosing cycles, each cycle has an adjustable dead time
- adjustable, independent reclaim time and safety time until recloser ready time delays
- cycle activation linked to instantaneous or time-delayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting
- inhibition/locking out of recloser by logic input.

Description

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault
- with or without timer hold

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 3 types of operation:

- type 1: the protection function uses the projection of the IO vector
- type 2: the protection function uses the I0 vector magnitude with half-plane tripping
- type 3: the protection function uses the I0 vector magnitude with angular sector tripping zone

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

Type 1 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold
- with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

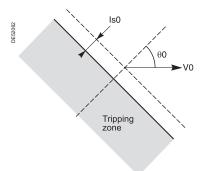
Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

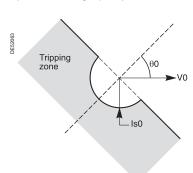
Type 2 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- choice of tripping direction
- with or without timer hold.

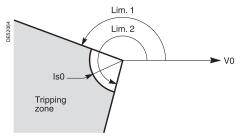
ANSI 67N/67NC type 3


Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.


This protectionfunction complies with the Enel DK5600 specification.

Type 3 characteristics


- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle q0 0°).

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle q0 0°).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

Description

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

- active overpower protection to detect overloads and allow load shedding
- reverse active power protection:
- □ against generators running like motors when the generators consume active power
- □ against motors running like generators when the motors supply active power.

ANSI 32Q/40 - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines:

- reactive overpower protection for motors which consume more reactive power with field loss
- reverse reactive overpower protection for generators which consume reactive power with field loss.

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR/14 - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

- locked rotor due to motor load (e.g. crusher):
- ☐ in normal operation, after a normal start
- $\hfill \Box$ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

- too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:
- □ starts per hour (or adjustable period)
- □ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)
- starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.

Characteristics

- Sepam series 20: 8 Pt100, NI100 or Ni120 type RTDs
- Sepam series 40: 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Description

Voltage protection functions

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase voltage (Sepam series 20 and Sepam series 40) or phase-to-neutral voltage (Sepem series 40 only), each voltage being monitored separately.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage in isolated neutral systems.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

Frequency protection functions

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding.

Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

- protect the generators from a reconnection without checking synchronization
- avoid supplying loads outside the installation.

Load shedding

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

- either accelerate shedding in the event of a large overload
- or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Current IDMT tripping curves

Multiple IDMT tripping curves are offered, to cover most applications:

- IEC curves (SIT, VIT/LTI, EIT)
- IEEE curves (MI, VI, EI)
- usual curves (UIT, RI, IAC).

The curve equations are given page 102.

Setting of IDMT tripping curves, time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x ls
- TMS factor, factor shown as T/b (see curve equation page 102).

Timer hold

The adjustable timer hold T1 is used for:

- detection of restriking faults (DT curve)
- coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

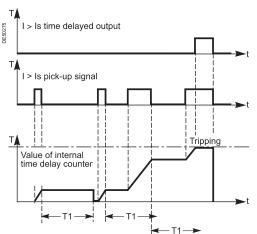
Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link.

Example of use: normal / backup mode network

- group A for network protection in normal mode, when the network is supplied by the utility
- group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines


Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

- transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAE)
- motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Summary table

Characteristics	Protection functions
2 groups of settings A and B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2

Detection of restriking faults with adjustable timer hold.

Protection Setting ranges

Functions	Settings			Time delays
ANSI 27 - Phase-to-phase un	dervoltage			
	5 to 100 % of Unp			0.05 s to 300 s
ANSI 27D/47 - Positive seque	ence undervoltage			
·	15 to 60 % of Unp			0.05 s to 300 s
ANSI 27R - Remanent underv	·			
	5 to 100 % of Unp			0.05 s to 300 s
ANSI 27S - Phase-to-neutral	·			
7.1.0.2.0 1 11.00 10 110.110.1	5 to 100 % of Vnp			0.05 s to 300 s
ANSI 32P - Directional active	·			0.0000000000000000000000000000000000000
7	1 to 120 % of Sn ⁽³⁾			0.1 s to 300 s
ANSI 32Q/40 - Directional rea				0.1010000
	5 to 120 % of Sn ⁽³⁾			0.1 s to 300 s
ANSI 37 - Phase undercurren	ıt			
7. TOTO: Triado ariado aria	0.15 to 1 lb			0.05 s to 300 s
ANSI 38/49T - Temperature m				0.000000000
Alarm and trip set points	0 to 180 °C (or 32 to 356 °F)			
ANSI 46 - Negative sequence				
Definite time	0.1 to 5 lb			0.1 s to 300 s
IDMT	0.1 to 0.5 lb (Schneider Electric) 0.1	to 1 lb (IEC_IFFF)		0.1 s to 1 s
Tripping curve	Schneider Electric			20.0
FF 1.9	IEC: SIT/A, LTI/B, VIT/B, EIT/C (2)			
	IEEE: MI (D), VI (E), EI (F) (2)			
ANSI 47 - Negative sequence				
· · · · · · · · · · · · · · · · · · ·	1 to 50 % of Unp			0.05 s to 300 s
ANSI 48/51LR/14 - Excessive	'			
THE ISOLETE EXCESSIVE	0.5 lb to 5 lb	ST starting time		0.5 s to 300 s
	0.0.0	LT and LTS time d	lelavs	0.05 s to 300 s
ANOL40040 T			Rate 1 and Rate 2	
ANSI 49RMS - Thermal overlo	oad		Rate I allu Rate 2	
		0 - 2.25 - 4.5 - 9	Rate I allu Rate 2	
Accounting for negative sequence co	omponent	0 - 2,25 - 4,5 - 9 Sepam serie 20	T1: 1 to 120 mn	
Accounting for negative sequence co		0 - 2,25 - 4,5 - 9 Sepam serie 20 Sepam serie 40		
Accounting for negative sequence co	omponent	Sepam serie 20	T1: 1 to 120 mn	
Accounting for negative sequence co	omponent Heating	Sepam serie 20 Sepam serie 40	T1: 1 to 120 mn T1: 1 to 600 mn	
Accounting for negative sequence co	omponent Heating	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn	
Accounting for negative sequence co Time constant	omponent Heating	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn	
Accounting for negative sequence continue constant Alarm and tripping set points	omponent Heating Cooling	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings conditions	omponent Heating Cooling	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature	Description of the control of the co	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings conditions	Description of the control of the co	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature	Cooling Ons Tripping time delay	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature	Cooling Tripping time delay Definite time	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Cooling Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1)	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT DT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Cooling Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI	Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT DT DT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Ent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT DT DT DT DT DT DT IDMT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F)	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT or IDMT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 In	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 ln 0.1 to 2.4 ln	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adj 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 In 0.1 to 2.4 In Definite time (DT; timer hold)	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve Is set point Timer hold	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 In 0.1 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time)	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time) None	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve Is set point Timer hold	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 In Definite time (DT; timer hold) IDMT (IDMT; reset time) None By negative sequence overvoltage	Sepam serie 20 Sepam serie 40 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve Is set point Timer hold Confirmation (2)	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time) None	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve Is set point Timer hold Confirmation (2) ANSI 50BF - Breaker failure	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time) None By negative sequence overvoltage By phase-to-phase undervoltage	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s
Accounting for negative sequence of Time constant Alarm and tripping set points Cold curve modification factor Switching of thermal settings condition Maximum equipment temperature ANSI 50/51 - Phase overcurre Tripping curve Is set point Timer hold Confirmation (2)	Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT(1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.1 to 24 In Definite time (DT; timer hold) IDMT (IDMT; reset time) None By negative sequence overvoltage	Sepam serie 20 Sepam serie 20 Sepam serie 40 Sepam serie 20 Sepam serie 40 50 to 300 % of rate 0 to 100 % By logic input By Is set point adji 60 to 200 °C (140 Timer hold DT DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	T1: 1 to 120 mn T1: 1 to 600 mn T2: 1 to 600 mn T2: 5 to 600 mn ed thermal capacity	0.1 s to 12.5 s at 10 ls Inst; 0.05 s to 300 s

 ⁽¹⁾ Tripping as of 1.2 ls.
 (2) Sepam series 40 only.
 (3) Sn = √3.In.Unp.

Functions	Settings		Time delays
ANSI 50N/51N or 50G/51G	- Earth fault / Sensitive earth fault		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
Is0 set point	0.1 to 15 ln0	Definite time	Inst; 0.05 s to 300 s
	0.1 to 1 ln0	IDMT	0.1 s to 12.5 s at 10 Is0
imer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
ANSI 50V/51V - Voltage-res	strained overcurrent		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
s set point	0.5 to 24 In	Definite time	Inst; 0.05 s to 300 s
-	0.5 to 2,4 In	IDMT	0.1 s to 12.5 s at 10 ls
imer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT ; reset time)		0.5 s to 20 s
ANSI 59 - Overvoltage	Phase-to-phase	Phase-to-neutral (2)	
rater or ottorioninge	50 to 150 % of Unp	50 to 150 % of Vnp	0.05 s to 300 s
ANSI 59N - Neutral voltage	· · · · · · · · · · · · · · · · · · ·		
Altorosit incution voltage	2 to 80 % of Unp		0.05 s to 300 s
ANSI 66 - Starts per hour	2 to 00 // or onp		0.003 to 0003
Starts per period	1 to 60	Period	1 to 6 hr
Consecutive starts	1 to 60	Time between starts	0 to 90 mn
		Time between starts	0 to 90 mm
ANSI 67 - Directional phas			
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
s set point	0.1 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.1 to 2,4 ln	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
Characteristic angle	30°, 45°, 60°		

⁽¹⁾ Tripping as of 1.2 ls. (2) Sepam series 40 only.

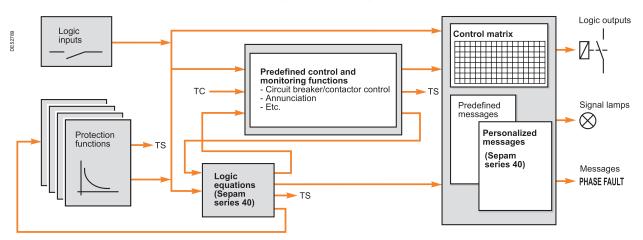
ProtectionSetting ranges

Functions		Settings		Time delays
ANSI 67N/67I	NC type 1 - Directional ea	rth fault, according to I0 project	ion	
Characteristic an	gle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
ls0 set point	-	0.1 to 15 ln0	Definite time	Inst; 0.05 s to 300 s
Vs0 set point		2 to 80 % of Un		-
Memory time		T0mem time	0; 0.05 s to 300 s	
		V0mem validity set point	0; 2 to 80 % of Unp	
Directional ea	arth fault, according to I0	magnitude with half-plan trippi	ng zone	
Characteristic an	gle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
	•	Tripping time delay	Timer hold	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT (1)	DT	
		RI	DT	
		IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
		IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
		IAC: I, VI, EI	DT or IDMT	
ls0 set point		0.1 to 15 ln0	Definite time	Inst; 0.05 s to 300 s
		0.1 to 1 In0	IDMT	0.1 s to 12.5 s at 10 Is0
/s0 set point		2 to 80 % of Unp		
Timer hold		Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
		IDMT (IDMT; reset time)		0.5 s to 20 s
ANSI 67N/67I	NC type 3 - Directional ea	rth fault, according to I0 magnit	ude with angular sector tr	ipping zone
Angle at start of tr	ripping zone	0° to 359°		
Angle at end of tri	pping zone	0° to 359°		
Is0 set point	CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst; 0.05 to 300 s
	1 A CT (sensitive, ln0 = 0.1 CT ln)	0.05 to 15 In0 (min. 0.1 A)		
	Core balance CT + ACE990 (range 1)	0.05 to 15 In0 (min. 0.1 A)		
Vs0 set point		Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
		Measured V0 (external VT)	0.6 to 80 % of Unp	
ANSI 81H - O	verfrequency			
Sepam series 20		50 to 53 Hz or 60 to 63 Hz		0.1 s to 300 s
Sepam series 40		50 to 55 Hz or 60 to 65 Hz		0.1 s to 300 s
	nderfrequency			
Sepam series 20		45 to 50 Hz or 55 to 60 Hz		0.1 s to 300 s
Sepam series 40		40 to 50 Hz or 50 to 60 Hz		0.1 s to 300 s
ANSI 81R - Ra	ate of change of frequenc			
		0.1 to 10 Hz/s		Inst; 0.15 s to 300 s

⁽¹⁾ Tripping as of 1.2 Is.

Control and monitoring Description

Sepam performs all the control and monitoring functions required for electrical network operation:


- the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.
- the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:

 □ customization of the control matrix by changing the assignment of output relays,
 LEDs and annunciation messages
- □ logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)
- □ creation of personalized messages for local annunciation (Sepam series 40 only).

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- □ results of protection function processing
- $\hfill \Box$ external logic data, connected to the logic inputs of an optional MES114 input / output module
- □ remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- □ activation of output relays to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 4 outputs included in the Sepam base unit (series 20 or series 40) may be extended by adding one MES114 modules with 10 logic inputs and 4 output relays. After selecting the MES114 type required by an application, the logic inputs must be assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation

A default input / output assignment is proposed for the most frequent uses.

Control and monitoring

Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Commande disjoncteur/contacteur

Control of breaking devices equipped with different types of closing and tripping coils:

- circuit breakers with shunt or undervoltage trip coils
- latching contactors with shunt trip coils

The function processes all breaking device closing and tripping conditions, based on:

- protection functions
- breaking device status data
- remote control orders
- specific control functions for each application (e.g. recloser).

The function also inhibits breaking device closing, according to the operating conditions.

With Sepam series 20, it is necessary to use an MES114 module in order to have all the required logic inputs.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the (**) key
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

ANSI 68 - Logic discrimination

This function provides:

- perfect tripping discrimination with phase-to-phase and phase-to-earth short-circuits, on all types of network
- faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

- sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)
- and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Control and monitoring

Description of predefined functions

Local indications on the Sepam front panel.

ANSI 30 - Local annunciation

LED indication on the Sepam front panel

- 2 LEDs indicate the unit operating status:
- ☐ green LED ON: Sepam on
- □ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)
- 9 yellow LEDs:
- □ pre-assigned and identified by standard removable labels
- $\hfill\Box$ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam's advanced UMI

Events and alarms may be indicated locally on Sepam's advanced UMI by:

- messages on the display unit, available in 2 languages:
- □ english, factory-set messages, not modifiable
- $\hfill \square$ local language, according to the version delivered (the language version is chosen when Sepam is set up)
- the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

- to clear the message from the display, press the key
- after the fault has disappeared, press the key: the light goes off and Sepam is
- the list of alarm messages remains accessible (♠ key) and may be cleared by pressing the ♠ key.

Control and monitoring

Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:

- customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages
- logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)
- creation of personalized messages for local annunciation (Sepam series 40 only).

| Control Column | Co

SFT2841: control matrix

Control matrix

The control matrix is a simple way to assign data from:

- protection functions
- control and monitoring functions
- logic inputs
- logic equations

to the following output data:

- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

Logic equation editor (Sepam series 40)

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- □ conditional inhibition/validation of functions
- □ etc.
- adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Personalized alarm and operating messages (Sepam series 40)

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on the Sepam display
- in the SFT2841 "Alarms" and "Alarm History" screens.

Base unit Presentation

Base units are defined according to the

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector

following characteristics:

■ type of current sensor connector.

Sepam base unit (series 20 or series 40) with integrated advanced UMI.

Sepam base unit (series 20 or series 40) with basic UMI.

Customized Chinese advanced UMI

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam base units (series 20 or series 40):

- advanced UMI
- basic UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

A Sepam (series 20 or series 40) with a remote advanced UMI is made up of :

- a base unit with basic UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

☐ for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

☐ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 162.

Advanced UMI

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand:

- display of all measurement and diagnosis data in numerical format with units and/
- display of operating and alarm messages, with alarm acknowledgment and Sepam resetting
- display and setting of all the Sepam parameters
- display and setting of all the parameters of each protection function
- display of Sepam and remote module versions
- output testing and logic input status display
- entry of 2 passwords to protect parameter and protection settings.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-quided access to data.
- graphical LCD screen to display any character or symbol
- excellent display quality under all lighting conditions: automatic contrast setting and backlit screen (user activated).

Basic UMI

A Sepam with basic UMI offers an economical solution suited to installations that do not require local operation (managed by a remote monitoring and control system) or to replace electromechanical or analog electronic protections units with no additional operating needs.

The basic UMI includes:

- 2 signal lamps indicating Sepam operating status:
 9 parameterizable yellow signal lamps equipped with a standard label
- button for clearing faults and resetting.

Working language

All the texts and messages displayed on the advanced UMI are available in 2 languages:

- english, the default working language
- and a second language, which may be
- $\quad \square \ \, \text{french}$
- □ spanish
- □ another "local" language.

Please contact us regarding local language customization.

Setting and operating software

SFT2841 setting and operating software can be used for easy setting of Sepam parameters and protection functions.

A PC containing the SFT2841 software is connected to the communication port on the front of the unit.

Selection guide

Functions				
Local indication				
Metering and diagnosis data			•	
Alarms and operating messages		•	•	
Sepam parameter setting		•		
Protection setting		•		
Version of Sepam and remote modules		•		
Status of logic inputs		•	•	
Local control				
Alarm acknowledgement		•	•	
Sepam reset				
Output testing		•	•	
Characteristics				
Screen				
Size		128 x 64 pixels	128 x 64 pixels	
Automatic contrast setting				
Backlit screen				
Keypad				
Number of keys	1	9	9	
LEDs				
Sepam operating status	2 LEDs on front	2 LEDs on front	 base unit: 2 LEDs on front remote advanced UMI: 2 LEDs on front 	
Indication LEDs	9 LEDs on front	9 LEDs on front	9 LEDs on remote advanced UMI	
Mounting				
	Flush mounted on front of cubicle	Flush mounted on front of cubicle	 base unit with basic UMI, mounted at the back of the compartment using the AMT840 mounting plate DSM303 remote advanced UMI module ,flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord 	

Base unit

Presentation

Hardware characteristics

Auxiliary power supply

Sepam series 20 and Sepam series 40 can be supplied by either of the following voltages:

- 24 to 250 V DC
- 110 to 240 V AC.

Four relay outputs

The 4 relay outputs O1 to O4 on the base unit must be connected to connector (A). Each output can be assigned to a predetermined function using the SFT2841 software.

O1, O2 and O3 are 3 control outputs with one NO contact. O1 and O2 are used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition.

O4 is an indication output with one NO contact and one NC contact.

It can be assigned to the watchdog function.

Main connector (A)

A choice of 2 types of removable, screw-lockable 20-pin connectors:

- CCA620 screw-type connector
- CCA622 ring lug connector.

Phase current input connector

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

- CCA630 or CCA634 connector for 1 A or 5 A current transformers
- CCA670 connector for LPCT sensors.

The presence of these connectors is monitored.

Voltage input connector

Sepam B21 and B22

Voltage sensors connected to the removable, screw-lockable CCT640 connector. The presence of the CCT640 connector is monitored.

Sepam series 40

Voltage sensors connected to the 6-pin connector (E).

A choice of 2 types of removable, screw-lockable 6-pin connectors:

- CCA626 screw-type connector
- or
- CCA627 ring lug connector.

The presence of the (E) connector is monitored.

Mounting accessories

AMT840 mounting plate

It is used to mount a Sepam with basic UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 20 and Sepam series 40 units with integrated advanced UMIs.

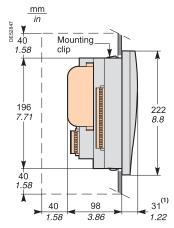
The accessory includes:

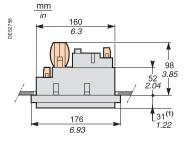
- a lead-sealable cover plate
- the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 20 and Sepam series 40 units with serial numbers higher than 0440000.

Sepam unit with integrated advanced UMI and lead sealing accessory AMT852.

mm in 2222 8.8


6.92 Front view of Sepam.


HAZARD OF CUTS

any jagged edges.

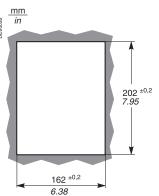
serious injury.

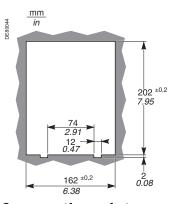
Dimensions

Sepam with advanced UMI and MES114, flush-mounted in front panel.

_____ Clearance for Sepam assembly and wiring.

Sepam with advanced UMI and MES114, flush-mounted in front panel.

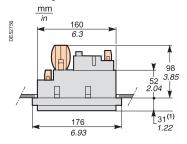

(1) With basic UMI: 23 mm (0.91 in).

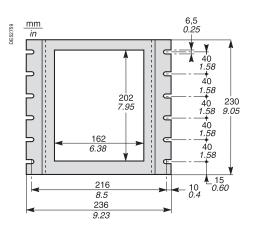

Cut-out

Cut-out accuracy must be complied with to ensure good withstand.

For mounting plate between 1.5 mm (0.059 in) and 3 mm (0.12 in) thick

For mounting plate 3.17 mm (0.125 inch) thick




Assembly with AMT840 mounting plate

Used to mount Sepam with basic UMI at the back of the compartment with access to the connectors on the rear panel.

Mounting associated with the use of the remote advanced UMI (DSM303).

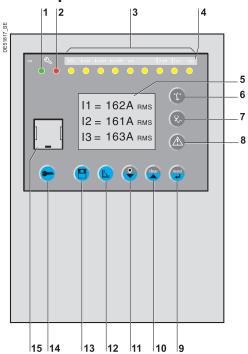
Sepam with basic UMI and MES114, mounted with AMT840 plate. Mounting plate thickness: 2 mm (0.079 in).

CAUTION

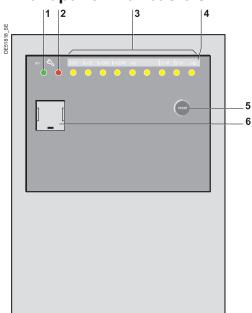
Trim the edges of the cut-out plates to remove

Failure to follow this instruction can cause

AMT840 mounting plate.


Base unit

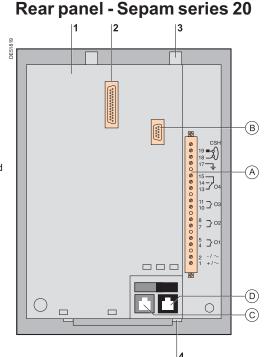
Description


- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- **10** Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameter setting.
- **14** Entry of 2 passwords.
- 15 PC connection port.

The " \square , \blacktriangle , \blacktriangledown keys (9, 10, 11) are used to browse through the menus and to scroll through and accept the values displayed.

Front panel with advanced UMI

Front panel with basic UMI

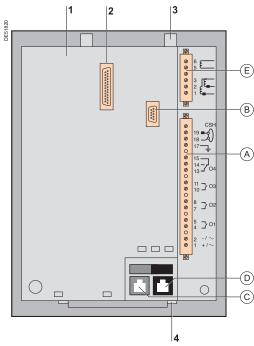


1 Green LED: Sepam on.

- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Acknowledgement / clearing of alarms and Sepam reset.
- 6 PC connection port.

1 Base unit.

- (A) 20-pin connector for:
 - auxiliary power supply
 - 4 relay outputs
 - 1 residual current input (Sepam S20, S23, T20, T23, M20 only).
- (B) Sepam S20, S23, T20, T23, M20: connector for 3 phase current I1, I2, I3 inputs and residual current
 - Sepam B21 and B22: connector for 3 phase voltage V1, V2, V3 inputs and 1 residual voltage V0 input.
- (C) Communication port.
- (D) Remote module connection port.
- 2 Connector for MES114 input/output module.
- 3 2 mounting clips.
- 4 2 locating nibs in flush-mounted position.



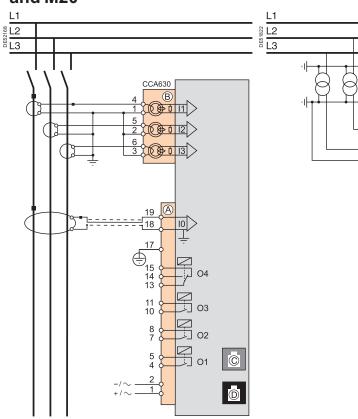
1 Base unit.

20-pin connector for:

- auxiliary poxer supply
- 4 relay outputs
- 1 residual current input.
- (B) Connector for 3 phase current I1, I2, I3 inputs and residual current
- (C) Communication port.
- (D) Remote module connection port .
- (E) 6-pin connector for 3 phase voltage V1, V2, V3 inputs.
- 2 Connector for MES114 input/output module.
- 3 2 mounting clips.
- 4 2 locating nibs in flush-mounted position.

Rear panel - Sepam series 40

Weight						
Sepam series 20		Minimum weight (base unit with basic	LIMI and without M	FS114)	1.2 kg (2.6 lb)
oepani senes 20			(base unit with adva		· · · · · · · · · · · · · · · · · · ·	1.7 kg (3.7 lb)
Sepam series 40			base unit with basic			1.4 kg (3.1 lb)
Sopam conce to			(base unit with adva			1.9 kg (4.2 lb)
Analog inputs		maximum moight	(baoo ami maraare	ood om and me	,,,,	110 119 (112 10)
Current transformer		Input impedance				< 0.02 Ω
I A or 5 A CT (with CCA630 or CC)	A634)	Consumption				< 0.02 VA at 1 A
I A to 6250 A ratings	. 100 1)	oonoumpuon				< 0.5 VA at 5 A
3.		Rated thermal wit	hstand			4 In
		1-second overload				100 In (≤ 500 A)
/oltage transformer		Input impedance				> 100 kΩ
220 V to 250 kV ratings		Input voltage				100 to 230/√3 V
		Rated thermal wit				240 V
		1-second overload	d			480 V
Temperature sensor i	input (MET148-2 mo	dule)				
Type of sensor		Pt 100				Ni 100 / 120
solation from earth		None				None
Current injected in sensor		4 mA				4 mA
Maximum distance between sens	or and module	1 km (0.62 mi)	MECALAE		MECALAE	
Logic inputs		MES114	MES114E		MES114F	
/oltage		24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC
Range		19.2 to 275 V DC	88 to 150 V DC	88 to 132 V AC	176 to 275 V DC	176 to 264 V AC
requency		- · · · · · · · · · · · · · · · · · · ·	0 4	47 to 63 Hz	- 0 A	47 to 63 Hz
Typical consumption Typical switching threshold		3 mA 14 V DC	3 mA 82 V DC	3 mA 58 V AC	3 mA 154 V DC	3 mA 120 V AC
nput limit voltage	At state 1	≥ 19 V DC	88 V DC	> 88 VAC	≥ 176 V DC	≥ 176 V AC
ipat iiiiit voitago	At state 0	≤6 V DC	≤75 V DC	≥ 66 V AC ≤ 22 V AC	≤ 137 V DC	≤48 V A C
solation of inputs in relation to oth		Enhanced	Enhanced	Enhanced	Enhanced	Enhanced
Relays outputs						
Control relay outputs (O1,	02. 03. 011 contacts) (2)					
/oltage	DC	24 / 48 V DC	127 V DC	220 V D	C	
	AC (47.5 to 63 Hz)	-	-	-		0 to 240 V AC
Continuous current		8 A	8 A	8 A	8 A	
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	<u>-</u>	
	L/R load < 20 ms	6/2A	0.5 A	0.2 A		
	L/R load < 40 ms	4/1A	0.2 A	0.1 A		
	Resistive load	-	-	-	8 A	
	p.f. load > 0.3	-	-	-	5 A	
Making capacity		< 15 A for 200 ms				
solation of outputs in relation to of		Enhanced				
Annunciation relay output		•	4071/50	000115		
/oltage	DC	24 / 48 V DC	127 V DC	220 V D		24- 240 \ / 4 0
Continuous ourrost	AC (47.5 to 63 Hz)	2 A	- 2A	- 2A	100 2 A	0 to 240 V AC
Continuous current Breaking capacity	L/R load < 20 ms	2/1A	0.5 A	0.15 A	2A	
теакіну сарасіту	p.f. load > 0.3	- Z/ IA	0.5A	0.13A	1 A	
solation of outputs in relation to of	_ '	Enhanced		<u> </u>	18	
Power supply		2				
/oltage		24 / 250 V DC		110 / 24	0 V AC	
Range		-20 % +10 %			10 % (47.5 to 63 Hz)
Deactivated consumption (1)	Sepam series 20	< 4.5 W		< 6 VA		,
	Sepam series 40	< 6 W		< 6 VA		
Maximum consumption (1)	Sepam series 20	< 8 W		< 15 VA		
<u> </u>	Sepam series 40	< 11 W		< 25 VA		
nrush current	Sepam series 20, serie 40	< 10 A for 10 ms, <	28 A for 100 µs	< 15 A fo	or first half-period	
acceptable momentary outages	Sepam series 20	10 ms		10 ms		
	Sepam series 40	10 ms		10 ms		
Analog output (MSA1	41 module)					
Current		4 - 20 mA, 0 - 20 r	mA, 0 - 10 mA			
oad impedance		< 600 Ω (wiring in	cluded)			
Accuracy		0.50 %				
1) According to configuration						

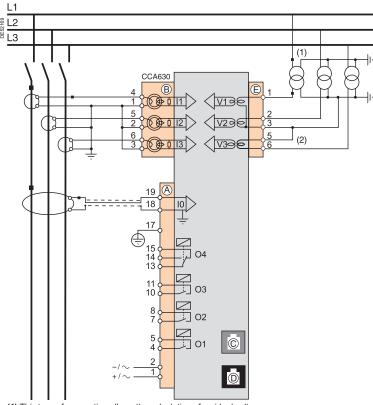

⁽¹⁾ According to configuration.
(2) Relay outputs comply with clause 6.7 of standard C37.90 (30 A, 200 ms, 2000 operations).

Electromagnetic compatibility	Standard	Level / Class	Value
Emission tests			
Disturbing field emission	IEC 60255-25		
· ·	EN 55022	A	
Conducted disturbance emission	IEC 60255-25		
	EN 55022	В	
Immunity tests – Radiated disturbances			
nmunity to radiated fields	IEC 60255-22-3		10 V/m ; 80 MHz - 1 GHz
	IEC 61000-4-3	III	10 V/m ; 80 MHz - 2 GHz
	ANSI C37.90.2 (1995)		35 V/m ; 25 MHz - 1 GHz
lectrostatic discharge	IEC 60255-22-2		8 kV air ; 6 kV contact
	ANSI C37.90.3		8 kV air ; 4 kV contact
nmunity to magnetic fields at network frequency	IEC 61000-4-8	IV	30 A/m (continuous) - 300 A/m (13
Immunity tests – Conducted disturbances			
nmunity to conducted RF disturbances	IEC 60255-22-6		10 V
ast transient bursts	IEC 60255-22-4	A or B	4 kV ; 2.5 kHz / 2 kV ; 5 kHz
	IEC 61000-4-4	IV	4 kV ; 2.5 kHz
	ANSI C37.90.1		4 kV ; 2.5 kHz
MHz damped oscillating wave	IEC 60255-22-1	III	2.5 kV MC ; 1 kV MD
	ANSI C37.90.1		2.5 kV MC and MD
00 kHz damped oscillating wave	IEC 61000-4-12		2.5 kV MC ; 1 kV MD
urges	IEC 61000-4-5	III	2 kV MC ; 1 kV MD
oltage interruptions	IEC 60255-11		Series 20: 100 %, 10 ms
			Series 40: 100 %, 20 ms
Mechanical robustness	Standard	Level / Class	Value
In operation			
brations	IEC 60255-21-1	2	1 Gn ; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	2 Hz - 13.2 Hz ; a = ±1 mm
hocks	IEC 60255-21-2	2	10 Gn / 11 ms
arthquakes	IEC 60255-21-3	2	2 Gn (horizontal axes)
			1 Gn (vertical axes)
De-energized			(
ibrations	IEC 60255-21-1	2	2 Gn ; 10 Hz - 150 Hz
hocks	IEC 60255-21-2	2	30 Gn / 11 ms
olts	IEC 60255-21-2	2	20 Gn / 16 ms
Climatic withstand	Standard	Level / Class	Value
	Standard	Level / Class	value
In operation			
xposure to cold	IEC 60068-2-1	Series 20: Ab	-25 °C (-13 °F)
		Series 40: Ad	
xposure to dry heat	IEC 60068-2-2	Series 20: Bb	+70 °C (+158 °F)
	IEC 00000 2 2	Series 40: Bd	10 days : 02 0/ DIL : 40 °C (404 °E)
continuous exposure to damp heat	IEC 60068-2-3	Ca	10 days; 93 % RH; 40 °C (104 °F)
emperature variation with specified variation rate	IEC 60068-2-14	Nb	-25 °C to +70 °C (-13 °F to +158 ° 5 °C/min (41 °F/min)
alt mist	IEC 60068-2-52	Kb/2	5 C/IIIII (41 F/IIIII)
fluence of corrosion/gaz test 2	IEC 60068-2-60	C	21 days ; 75 % RH ; 25 °C (-13 °F)
illuerice of corrosion/gaz test 2	IEC 00000-2-00	C	0.5 ppm H ₂ S; 1 ppm SO ₂
ifluence of corrosion/gaz test 4	IEC 60068-2-60		21 days ; 75 % RH ; 25 °C ;
muchice of corresion/gaz test 4	120 00000-2-00		0.01 ppm H ₂ S; 0.2 ppm SO ₂ ;
			0.02 ppm NO _{2:} ; 0.01 ppm Cl ₂
In storage (3)			2;7 - 17 - 2
xposure to cold	IEC 60068-2-1	Ab	-25 °C (-13 °F)
xposure to dry heat	IEC 60068-2-2	Bb	+70 °C (+158 °F)
ontinuous exposure to damp heat	IEC 60068-2-3	Ca	56 days ; 93 % RH ; 40 °C (104 °F
Safety	Standard	Level / Class	Value
<u> </u>	Stanuaru	Level / Class	value
Enclosure safety tests			
ront panel tightness	IEC 60529	IP52	Other panels closed, except for
	NEMA	T 10 10 1 1 1	rear panel IP20
Second Distance	NEMA	Type 12 with gasket supp	
ire withstand	IEC 60695-2-11		650 °C with glow wire (1562 °F)
Electrical safety tests			
2/50 µs impulse wave	IEC 60255-5		5 kV ⁽¹⁾
ower frequency dielectric withstand	IEC 60255-5		2 kV 1 mn ⁽²⁾
Certification			
€	Harmonized standard:	European directives:	
	EN 50263	■ 89/336/CEE Electrom	nagnetic Comptability (EMC) Directive
		□ 92/31/CEE Amendm	
		□ 93/68/CEE Amendm	
		■ 73/23/CEE Low Volt	
		□ 93/68/CEE Amendm	
UL-c AL us CSA	UL508 - CSA C22.2 n° 14- CSA C22.2 n° 14-95 / n° 9		File E212533 File 210625

- (1) Except for communication: 3 kV in common mode and 1kV in differential mode (2) Except for communication: 1 kVrms
 (3) Sepam must be stored in its original packing.

Sepam S20, S23, T20, T23 and M20

Sepam B21 and B22

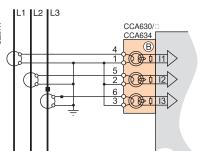

(1) This type of connection allows the calculation of residual voltage.

Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
	Screw type	CCA620	wiring with no fittings: 1 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire DZ5CE025D for 1 x 2.5 mm² wire AZ5DE010D for 2 x 1 mm² wires ube length: 8.2 mm stripped length: 8 mm
	6.35 mm ring lugs	CCA622	■ 6.35 mm ring or spade lugs (1/4 in) ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 0.7 to 1 Nm
For Sepam S20, S23, T20, T23 and	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	wire cross-section of 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
M20	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
For Sepam B21 and B22	Screw type	CCT640	Same as wiring for the CCA620
	Green RJ45 plug		CCA612
	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)

Sepam series 40


- (1) This type of connection allows the calculation of residual voltage.
 (2) Accessory for bridging terminals 3 and 5 supplied with CCA626 and CCA627 connector.

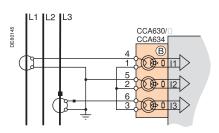
Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
	Screw type	CCA620	wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≽AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≽AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire DZ5CE025D for 1 x 2.5 mm² wire AZ5DE010D for 2 x 1 mm² wires tube length: 8.2 mm stripped length: 8 mm
	6.35 mm ring lugs	CCA622	 ■ 6.35 mm ring or spade lugs (1/4 in) ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 0.7 to 1 Nm
	4 mm ring lugs	CCA630, CCA634, for connection of 1 A or 5 A CTs	■ wire cross-section of 1.5 to 6 mm² (AWG 16-10) ■ tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
	Green RJ45 plug		CCA612
	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)
	Screw type	CCA626	Same as wiring for the CCA620
	6.35 mm ring lugs	CCA627	Same as wiring for the CCA622

Variant 1: phase current measurements by 3 x 1 A or 5 A CTs (standard connection)

Description


Connection of 3 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

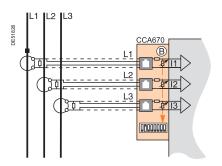
Sensor type	5 A CT or 1 A CT
Number of CTs	11, 12, 13
Rated current (In)	1 A to 6250 A

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Description

Connection of 2 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of phase currents 1 and 3 is sufficient to ensure all the phase current-based protection functions.


The phase current I2 is only assessed for metering functions, assuming that I0 = 0.

This arrangement does not allow the calculation of residual current.

Parameters

Sensor type	5 A CT or 1 A CT
Number of CTs	I1, I3
Rated current (In)	1 A to 6250 A

Variant 3: phase current measurement by 3 LPCT type sensors

Description

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA670 connector. The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

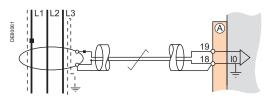
Note: Parameter In must be set 2 twice:

- Software parameter setting using the advanced UMI or the SFT2841 software tool
- Hardware parameter setting using microswitches on the CCA670 connector

Base unit

Other residual current input connection schemes

Variant 1: residual current calculation by sum of 3 phase currents

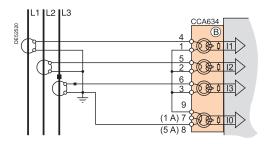

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by $3 \times 1 \, \text{A}$ or $5 \, \text{A}$ CTs or by $3 \, \text{LPCT}$ type sensors. See current input connection diagrams.

Parameters

Residual current	Rated residual current	Measuring range
Sum of 3 Is	In0 = In, CT primary current	0.1 to 40 In0

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT (standard connection)

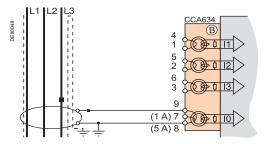

Description

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

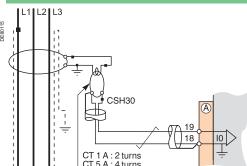
Parameters

Residual current	Rated residual current	Measuring range
2 A rating CSH	In0 = 2 A	0.2 to 40 A
5 A rating CSH (Sepam series 40)	In0 = 5 A	0.5 to 100 A
20 A rating CSH	In0 = 20 A	2 to 400 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634


Description

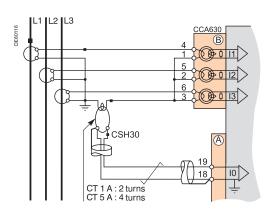
Residual current measurement by 1 A or 5 A CTs.


- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

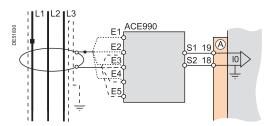
Parameters

Residual current	Rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5ACT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT


Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:


- connection of CSH30 interposing ring CT to 1 A CT: make 2 turns through CSH primary
- connection of CSH30 interposing ring CT to 5 A CT: make 4 turns through CSH primary.
- for Sepam series 40, the sensitivity can be mulitplied by 10 using the "sensitive" setting with ln0 = ln/10.

Parameters

Residual current	Rated residual current	Measuring range
1ACT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5ACT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

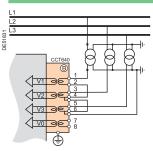
Description

The ACE990 is used as an interface between an MV core balance CT with a ratio of 1/n (50 < n < 1500) and the Sepam residual current input.

This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

Residual current	Rated residual current	Measuring range
ACE990 - range 1	$ln0 = lk.n^{(1)}$	0.1 to 20 ln0
$(0.00578 \le k \le 0.04)$		
ACE990 - range 2	In0 = lk.n ⁽¹⁾	0.1 to 20 ln0
(0.0578 ≤ k ≤ 0.26316)		

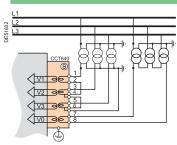

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Sepam series 20

The phase and residual voltage transformer secondary circuits are connected to the CCT640 connector (item (B)) on Sepam series 20 type B units. The CCT640 connector contains 4 transformers which perform isolation and impedance matching of the VTs and Sepam input circuits.

Variant 1: measurement of 3 phase-to-neutral voltages (standard connection)

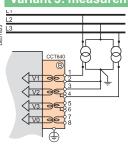


Parameters		
Voltages measured by VTs	V1, V2, V3	
Residual voltage	Sum of 3Vs	

Functions available

V1, V2, V3
U21, U32, U13, V0, Vd, f
All
All

Variant 2: measurement of 3 phase-to-neutral voltages and residual voltage


Parameters V/1 V/2 V/3 Voltages measured by V/Ts

vollages measured by v is	V I, VZ, VJ	
Residual voltage	External VT	
Functions available		

Voltages measured V1, V2, V3, V0 U21, U32, U13, Vd, f Values calculated Measurements available

Protection functions available (according to type of Sepam) All

Variant 3: measurement of 2 phase-to-phase voltages

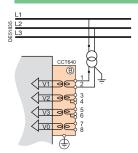
Parameters

Voltages measured by VTs	U21, U32
Residual voltage	None

Functions available

Voltages measured	V1, V2, V3
Values calculated	U13, Vd, f
Measurements available	U21, U32, U13, Vd, f
Protection functions available (according to type of Sepam)	All except 59N, 27S

Variant 4: measurement of 1 phase-to-phase voltage and residual voltage


Parameters

١	Voltages measured by VTs	U21
Ē	Residual voltage	External VT

Functions available

i dilotiono d'anabio	
Voltages measured	U21, V0
Values calculated	f
Measurements available	U21, V0, f
Protection functions available (according to type of Sepam)	All except 47, 27D, 27S

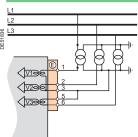
Variant 5: measurement of 1 phase-to-phase voltage

Parameters

Voltages measured by VTs	U21
Residual voltage	None

Eunctions available

runctions available	
Voltages measured	U21
Values calculated	f
Measurements available	U21, f
Protection functions available (according to type of Sepam)	All except 47, 27D, 59N, 27S


Voltage inputs

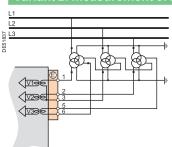
Sepam series 40

The phase and residual voltage transformer secondary circuits are connected directly to the connector marked (E).

The 3 impedance matching and isolation transformers are integrated in the Sepam series 40 base unit.

Variant 1: measurement of 3 phase-to-neutral voltages (standard connection)

Phase voltage sensor parameter setting Residual voltage sensor parameter setting Voltages measured Values calculated

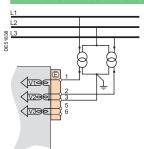

Measurements unavailable Protection functions unavailable (according to type of Sepam) 3V 3V sum V1, V2, V3

None

None

U21, U32, U13, V0, Vd, Vi, f

Variant 2: measurement of 2 phase-to-phase voltages and residual voltage

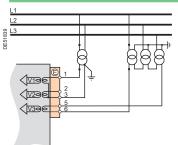


Phase voltage sensor parameter setting Residual voltage sensor parameter setting Voltages measured Values calculated

Measurements unavailable Protection functions unavailable (according to type of Sepam) U21, U32 External VT U21, U32, V0 U13, V1, V2, V3, Vd, Vi, f

None None

Variant 3: measurement of 2 phase-to-phase voltages

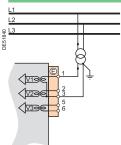


Phase voltage sensor parameter setting Residual voltage sensor parameter setting Voltages measured Values calculated

Measurements unavailable Protection functions unavailable (according to type of Sepam) U21, U32 None U21, U32 U13, Vd, Vi, f

V1, V2, V3, V0 67N/67NC, 59N

Variant 4: measurement of 1 phase-to-phase voltage and residual voltage


Phase voltage sensor parameter setting Residual voltage sensor parameter setting

Voltages measured Values calculated

Measurements unavailable Protection functions unavailable (according to type of Sepam) U21 External VT U21, V0 f

U32, U13, V1, V2, V3, Vd, Vi 67, 47, 27D, 32P, 32Q/40, 27S

Variant 5: measurement of 1 phase-to-phase voltage

Phase voltage sensor parameter setting Residual voltage sensor parameter setting Voltages measured

Values calculated

Measurements unavailable Protection functions unavailable (according to type of Sepam) U21 None U21 f

U32, U13, V1, V2, V3, V0, Vd, Vi 67, 47, 27D, 32P, 32Q/40, 67N/67NC, 59N, 27S

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to:

- complete library: technical documents, catalogs, FAQs, brochures...
- selection guides from the e-catalog.
- product discovery sites and their Flash animations.
 You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

Training

Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.

The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Sepam series 20 Sepam series 40 Sepam series 80

Sepam series 80

Range description	3
Sepam series 20 and Sepam series 40	47
Sepam series 80	86
Selection table	86
Functions	88
Sensor inputs	88
General settings	89
Metering and diagnosis	90
Description	90
Characteristics	95
Protection	96
Description	96
Tripping curves	102
Main characteristics	104
Setting ranges	105
Control and monitoring	109
Description	109
Description of predefined functions	110
Adaptation of predefined functions using the SFT2841 software	114
Customized functions using Logipam	116
Characteristics	117
Base unit	117
Presentation	117
Description	121
Technical characteristics	123
Environmental characteristics	124
Dimensions	125
Connection diagrams	126
Base unit	126
Connection	127
Sepam B83	128
Sepam C86	129
Phase current inputs	130
Residual current inputs	131
Phase voltage inputs Residual voltage input	133
Main channels	133
Additional channels for Sepam B83	134
Additional channel for Sepam B80	135
Available functions	136
Additional modules and accessories	139
Order form	217
Indov	227

		Subs	tation	า		Trans	sform	er	Moto	r		Gene	rator		Busb	ar	Сар
Protection	ANSI code	S80	S81	S82	S84	T81	T82	T87	M81	M87	M88	G82	G87	G88	B80	B83	C86
Phase overcurrent ⁽¹⁾	50/51	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Earth fault / Sensitive earth fault (1)	50N/51N 50G/51G	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Breaker failure	50BF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Thermal overload for cables	49RMS		2	2	2												
Thermal overload for machines (1)	49RMS					2	2	2	2	2	2	2	2	2			
Thermal overload for capacitors	49RMS																2
Capacitor bank unbalance	51C					-						_					8
Restricted earth fault	64REF					2	2	2				2		2			
Two-winding transformer differential	87T							1			1			1			
Machine differential	87M									1			1				
Directional phase overcurrent(1)	67			2	2		2	2				2	2	2			
Directional earth fault (1)	67N/67NC		2	2	2	2	2	2	2	2	2	2	2	2			
Directional active overpower	32P		2	2	2	2	2	2	2	2	2	2	2	2			
Directional reactive overpower	32Q								1	1	1	1	1	1			
Directional active underpower	37P				2							2					
Phase undercurrent	37								1	1	1						
Excessive starting time, locked rotor	48/51LR								1	1	1						
Starts per hour	66								1	1	1						
Field loss (underimpedance)	40								1	1	1	1	1	1			
Pole slip	78PS								1	1	1	1	1	1			
Overspeed (2 set points)(2)	12																
Underspeed (2 set points) (2)	14																
Voltage-restrained overcurrent	50V/51V											2	2	2			
Underimpedance	21B 50/27					-						1	1	1			
Inadvertent energization Third harmonic undervoltage / 100 % stator earth fault	27TN/64G2 64G											2	2	2			
Overfluxing (V / Hz)	24							2				2	2	2			
Positive sequence undercurrent	27D	2	2	2	4	2	2	2	2	2	2	2	2	2	4	4	4
Remanent undervoltage	27R	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Undervoltage (L-L or L-N)	27	4	4	4	2	4	4	4	4	4	4	4	4	4	2	2	2
Overvoltage (L-L or L-N)	59	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Neutral voltage displacement	59N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Negative sequence overvoltage	47	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Overfrequency	81H	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Underfrequency	81L	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Rate of change of frequency	81R				2												
Recloser (4 cycles) (2)	79																
Thermostat / Buchholz (2)	26/63																
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T																
Synchro-check (4)	25																
Control and monitori																	
Circuit breaker / contactor control	94/69																
Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart										_	_						
De-excitation													_	-			
Genset shutdown													-	-			
Capacitor step control (2)													-				
Logic discrimination (2)	68																
Latching / acknowledgement	86		•	•				•		-	-			•		•	•
Annunciation	30		-	-		•				•	•	•				-	•
Switching of groups of settings			-	-	-	-		-		-	-	-			-	-	
Adaptation using logic equations			_	_	-	-	_	_		_	_	-	_	_	-	•	
Logipam programming (Ladder la	nguage)																

Logipam programming (Ladder language)

The figures indicate the number of relays available for each protection function.

■ standard, □ options.

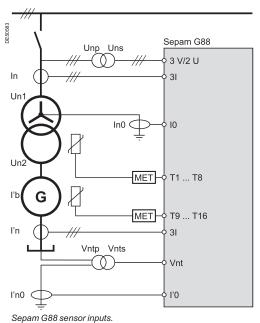
(1) Protection functions with 2 groups of settings.

(2) According to parameter setting and optional MES120 input/output modules.

(3) With optional MET148-2 temperature input modules.

(4) With optional MCS025 synchro-check module.

Motoring		tatio		201		sform		Moto		MOO	Gene		G88	Bush		Cap.
Metering	300	301	302	304	101	102	10/	IVIOI	IVIO/	IVIOO	Goz	Gol	G00	DOU ■	■	Cot
Phase current I1, I2, I3 RMS Measured residual current I0, calculated I0Σ	ы										E			ы		JB 1
Demand current I1, I2, I3					•	•										P
Peak demand current IM1, IM2, IM3			_		•	-	-	-			•	-			-	
Measured residual current I'0		-	-		-		-		-	-	-		-	-		_
Voltage U21, U32, U13, V1, V2, V3 Residual voltage V0	Н			н	ы					н				н	н	ы.
Positive sequence voltage Vd / rotation direction											•					М.
Negative sequence voltage Vi	н			н					н	н	Ю.			н	н	Ю.
Frequency	÷	-	-	-	-	÷	-	-	-	-		÷	-	-	-	ю.
Active power P, P1, P2, P3 Reactive power Q, Q1, Q2, Q3	ы										E			ы		Ю.
Apparent power S, S1, S2, S3						•	-					•	•			В.
Peak demand power PM, QM Power factor	м	н	н	н	ы				н		Ю.			н		Ю.
Calculated active and reactive energy (±Wh, ±VARh)		-		-		÷	-			-		÷	-		-	
Active and reactive energy by pulse counting ⁽²⁾																
(± Wh, ± VARh)																
Phase current I'1, I'2, I'3 RMS Calculated residual current I'0Σ										н						
Voltage U'21, V'1 and frequency																
Voltage U'21, U'32, U'13, V'1, V'2, V'3, V'd, V'i and															•	
frequency Residual voltage V'0															-	
Temperature (16 RTDs) ⁽³⁾																
Rotation speed (2)																
Neutral point voltage Vnt								•	•	•	•	•	•			
Network and machine diagnosis			_													
Tripping context Tripping current Tripl1, Tripl2, Tripl3					н	-					B			ы		Ю.
Phase fault and earth fault trip counters					•										•	
Unbalance ratio / negative sequence current li					•					•	•				•	
Harmonic distortion (THD), current and voltage lthd, Uthd	•	•	•	•	•	•	•	•	•	•	•	•		-	•	•
Phase displacement ϕ 0, ϕ 0, ϕ 0 Σ	Н			н						н			•	ы	н	ы.
Phase displacement φ1, φ2, φ3	-	÷	-	÷		÷	÷	-	-	-		-	-	H	-	
Disturbance recording Thermal capacity used	-	÷	-	÷		÷	÷	-	-	-		÷	÷	-	-	
Thermal capacity used Remaining operating time before overload tripping		_	-	_		-	÷		_	_		÷	÷			-
Waiting time after overload tripping											•					
Running hours counter / operating time																
Starting current and time										•						
Start inhibit time																
Number of starts before inhibition									-			_	_			
Unbalance ratio / negative sequence current l'i					_		÷		-	-	-	÷	-			
Differential current Idiff1, Idiff2, Idiff3 Through current It1, It2, It3																
Current phase displacement θ							•		•	•		•	•			
Apparent positive sequence impedance Zd						•	•					•	•			15.
Apparent phase-to-phase impedances Z21, Z32, Z13	3				•			•	-			-	-	•	•	-
Third harmonic voltage, neutral point or residual											-	-	-			
Difference in amplitude, frequency and phase of voltages compared for synchro-check (4)		_	_	_	_]	1				-	_	_	_	_	
Capacitor unbalance current and capacitance																
Switchgear diagnosis ANSI co	de															
CT / VT supervision 60/60FL	•	•		•		•	•		•			•	•			
Trip circuit supervision (2) 74																
Auxiliary power supply monitoring	•	•	•	•	•	•			-	•	•	•	•	•	•	•
Cumulative breaking current	•	-	-	-	-			-			-			•	-	
Number of operations, operating time, charging time, number of racking out operations $^{(2)}$																
Modbus communication, IEC 60 8	70-5	-103	, DNI	P3 or	·IEC	618	50									
Measurement readout (4)																
Remote indication and time tagging of events (4)																
Remote control orders (4) Remote protection setting (4)																
Transfer of disturbance recording data (4)																
■ standard □ ontions																


standard, poptions.

(2) According to parameter setting and optional MES120 input/output modules.

(3) With optional MET148-2 temperature input modules.

(4) With optional MCS025 synchro-check module.

(5) With ACE949-2, ACE959, ACE937, ACE969TP-2, ACE969FO-2 or ECI850 communication interface.

Sepam series 80 has analog inputs that are connected to the measurement sensors required for applications:

- main analog inputs, available on all types of Sepam series 80:
- □ 3 phase current inputs I1, I2, I3
- □ 1 residual current input I0
- □ 3 phase voltage inputs V1, V2, V3
- □ 1 residual voltage input V0
- additional analog inputs, dependent on the type of Sepam:
- □ 3 additional phase current inputs I'1, I'2, I'3
- □ 1 additional residual current input l'0
- □ 3 additional phase voltage inputs V'1, V'2, V'3
- □ 1 additional residual voltage input V'0

The table below lists the analog inputs available according to the type of Sepam series 80.

		S80, S81, S82, S84	T81, T82, M81, G82	T87, M87, M88, G87, G88	B80	B83	C86
Phase current inputs	Main channel	11, 12, 13	11, 12, 13	11, 12, 13	11, 12, 13	11, 12, 13	11, 12, 13
·	Additional channels			l'1, l'2, l'3			
Residual current inputs	Main channel	10	10	10	10	10	10
	Additional channels	1'0	ľ0	1'0	ľ0		
Unbalance current inputs for capacitor steps							l'1, l'2, l'3, l'0
Phase voltage inputs	Main channel	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32
	Additional channels				V'1 or U'21	V'1, V'2, V'3 or U'21, U'32	
Residual voltage inputs	Main channel	V0	V0	V0	V0 ⁽¹⁾	V0	V0
	Additional channel				1	V'0	
Temperature inputs (on MET148-2 module)			T1 to T16	T1 to T16			T1 to T16

Note: by extension, an additional measurement (current or voltage) is a value measured via an additional analog channel. (1) Available with phase voltage U21, U32.

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	ral settings	Selection	Value
ln, l'n	Rated phase current	2 or 3 1 A / 5 A CTs	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A ⁽¹⁾
ľn	Unbalance current sensor rating (capacitor application)	CT1A/2A/5A	1 A to 30 A
lb	Base current, according to rated power of equipment		0.2 to 1.3 ln
l'b	Base current on additional channels	Applications with transformer	l'b = lb x Un1/Un2
	(not adjustable)	Other applications	l'b = lb
ln0, l'n0	Rated residual current	Sum of 3 phase currents	See In(I'n) rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A
		Core balance CT + ACE990 (the core balance CT ratio 1/n must be such that 50 ≤ n ≤ 1500)	According to current monitored and use of ACE990
Unp, U'np	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		220 V to 250 kV
Uns,	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 to 230 V
U'ns	· -	2 VTs: U21, U32	90 to 120 V
		1 VT: U21	90 to 120 V
		1 VT: V1	90 to 230 V
Uns0, U'nso	Secondary zero sequence voltage for primary zero sequence voltage Unp/ $\sqrt{3}$		Uns/3 or Uns/√3
Vntp	Neutral point voltage transformer primary voltage (generator application)		220 V to 250 kV
Vnts	Neutral point voltage transformer secondary voltage (generator application)		57.7 V to 133 V
fn	Rated frequency		50 Hz or 60 Hz
	Phase rotation direction		1-2-3 oru 1-3-2
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 min
	Pulse-type accumulated energy meter	Increments active energy	0.1 kWh to 5 MWh
	•	Increments reactive energy	0.1 kVARh to 5 MVARh
P	Rated transformer power	<u>.</u>	100 kVA to 999 MVA
Un1	Rated winding 1 voltage (main channels: I)		220 V to 220 kV
Un2	Rated winding 2 voltage (additional channels: I')		220 V to 400 kV
ln1	Rated winding 1 current (not adjustable)		In1 = P/(√3 Un1)
ln2	Rated winding 2 current (not adjustable)		In2 = P/(√3 Un2)
	Transformer vector shift		0 to 11
Ωn	Rated speed (motor, generator)		100 to 3600 rpm
₹	Number of pulses per rotation (for speed acquisition)		1 to 1800 (Ωn x R/60 ≤ 1500)
	Zero speed set point		5 to 20 % of Ωn
	Number of capacitor steps		1 to 4
	Connection of capacitor steps		Star / Delta
	Capacitor step ratio	Step 1	1
		Step 2	1, 2
		Step 3	1, 2, 3, 4
		Step 4	1, 2, 3, 4, 6, 8

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

for the operation and maintenance of your equipment are available locally

or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13.

Different types of sensors may be used to meter phase current:

- 1 A or 5 A current transformers
- LPCT type current sensors.

Residual current

Four types of residual current values are available depending on the type of Sepam and sensors connected to it:

- \blacksquare 2 residual currents I0 Σ and I'0 Σ , calculated by the vector sum of the 3 phase currents
- 2 measured residual currents I0 and I'0. Different types of sensors may be used to measure residual current:
- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer with CSH30 interposing ring CT
- any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

- demand current is calculated over an adjustable period of 5 to 60 minutes
- peak demand current is the greatest demand current and indicates the current drawn by peak loads.
 Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3 and V'1, V'2, V'3
- phase-to-phase voltages U21, U32, U13 and U'21, U'32, U'13
- residual voltage V0, V'0 or neutral point voltage Vnt
- positive sequence voltage Vd, V'd and negative sequence voltage Vi, V'i
- frequency measured on the main and additional voltage channels.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos φ).

According to the sensors used, power calculations may be based on the 2 or 3 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

The 3 wattmeter method gives an accurate calculation of 3-phase and phase by phase powers in all cases, regardless of whether or not the neutral is distributed.

Metering and diagnosis

Description

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current. The peak demand powers may be cleared.

Energy

- 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions
- 1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Rotation speed

Calculated by the counting of pulses transmitted by a proximity sensor at each passage of a cam driven by the rotation of the motor or generator shaft. Acquisition of pulses on a logic input.

Phasor diagram

A phasor diagram is displayed by SFT2841 software and the mimic-based UMI to check cabling and assist in the setting and commissioning of directional and differential protection functions.

According to the connected sensors, all current and voltage information can be selected for display in vector form.

Description

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V1, V2, V3, V0, Vi, Vd, F, P, Q, Idiff, It and Vnt values when tripping occurs. The values for the last five trips are stored

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Number of trips

2 trip counters:

- number of phase fault trips, incremented by each trip triggered by ANSI 50/51, 50V/51V and 67 protection functions
- number of earth fault trips, incremented by each trip triggered by ANSI 50N/51 and 67N/67NC protection functions.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3 (and I'1, I'2 and I'3), indicating the degree of unbalance in the power supplied to the protected equipment.

Total harmonic distortion

Two THD values calculated to assess network power quality, taking into account harmonics up to number 13:

- current THD, calculated according to I1
- voltage THD, calculated according to V1 or U21.

Phase displacement

- phase displacement ϕ 1, ϕ 2, ϕ 3 between phase currents I1, I2, I3 and voltages V1, V2, V3 respectively
- phase displacement φ0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs logic data: pick-up, ...

Recording character	istics	
Number of recordings in CO	Adjustable from 1 to 19	
Total duration of a recording	Adjustable from 1 to 11 s	
Number of samples per per	iod	12 or 36
Duration of recording prior	to occurrence of the event	Adjustable from 0 to 99 periods
Maximum recording	capability	
Network frequency	12 samples per period	36 samples per period
50 Hz	22 s	7 s
60 Hz	18 s	6 s

Voltage comparison for synchro-check

For the synchro-check function, the MCS025 module continuously measures the amplitude, frequency and phase differences between the 2 voltages to be checked.

Out-of-sync context

Storage of amplitude, frequency and phase differences between the 2 voltages measured by the MCS025 module when a closing order is inhibited by the synchrocheck function.

Description

Machine diagnosis assistance

Sepam assists facility managers by providing:

- data on the operation of their machines
- predictive data to optimize process management
- useful data to facilitate protection function setting and implementation.

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function.

Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function.

The time is used by facility managers to optimize process management in real time by deciding to:

- interrupt according to procedures
- continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function.

Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb. Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over 1.2 lb. For each start / overload, Sepam stores:

- maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Differential and through current

Values calculated to facilitate the implementation of ANSI 87T and 87M differential protection functions.

Current phase displacement

Phase shift between the main phase currents and additional phase currents to facilitate implementation of ANSI 87T differential protection function.

Apparent positive sequence impedance Zd

Value calculated to facilitate the implementation of the underimpedance field loss protection (ANSI 40).

Apparent phase-to-phase impedances Z21, Z32, Z13

Values calculated to facilitate the implementation of the backup underimpedance protection function (ANSI 21B).

Third harmonic neutral point or residual voltage

Values measured to facilitate the implementation of the third harmonic undervoltage / 100 % stator earth fault protection function (ANSI 27TN/64G2).

Capacitance

Measurement, for each phase, of the total capacitance of the connected capacitor bank steps. This measurement is used to monitor the condition of the capacitors.

Capacitor unbalance current

Measurement of the unbalance current for each capacitor bank step. This measurement is possible when the steps are connected in a double star arrangement.

Description

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions.

The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.

Monitoring includes:

- consistency checking of currents and voltages
- acquisition of phase or residual voltage transformer protection fuse blown contacts.

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.

ANSI 74 - Trip/closing circuit supervision

To detect trip circuit and closing circuit failures, Sepam monitors:

- shunt trip coil connection
- closing coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.

The trip and closing circuits are only supervised when connected as shown below.

Connection for shunt trip coil monitorina.

Connection for undervoltage trip coil monitorina.

Connection for closing circuit supervision

Auxiliary power supply monitoring

The voltage rating of Sepam's auxiliary supply should be set between 24 V DC and

If the auxiliary supply drifts, 2 alarms may be triggered:

- high set point alarm, adjustable from 105 % to 150 % of rated supply (maximum
- low set point alarm, adjustable from 60 % to 95 % of rated supply (minimum 20 V).

Cumulative breaking current monitoring

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current.

Cumulative breaking current is given in (kA)2.

An alarm can be generated when the total cumulative breaking current exceeds a set point.

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time **Number of rackouts**

Used to assess the condition of the breaking device operating mechanism.

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

- detect internal failures that may cause nuisance tripping or failed fault tripping
- put Sepam in fail-safe position to avoid any unwanted operation
- \blacksquare alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored:

- major failures: Sepam shutdown (to fail-safe position).
- The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown
- minor failures: downgraded Sepam operation.

Sepam's main functions are operational and equipment protection is ensured.

Battery monitoring

Monitoring of battery voltage to guarantee data is saved in the event of an outage. A battery fault generates an alarm.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly.

The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Metering and diagnosis Characteristics

Functions		Measurement range	Accuracy (1)	MSA1/1	Saving
Metering		Measurement range	Accuracy	WISA 14 I	Savilly
•		0.004-404-	1.0.5.0/	1.0	1
Phase current Residual current	Calculated	0.02 to 40 ln 0.005 to 40 ln	±0.5 %		
Residual current	Measured	0.005 to 40 In 0.005 to 20 In0	±1 %	 -	
Demand current	weasured		±0.5 %	-	
Peak demand current		0.02 to 40 In 0.02 to 40 In	±0.5 %		
Phase-to-phase voltage	Main channels (U)	0.05 to 1.2 Unp	±0.5 %	-	
Priase-to-priase voltage	Additional channels (U')	0.05 to 1.2 Unp	±0.5 %	+	
Phase-to-neutral voltage	Main channels (V)	0.05 to 1.2 Vnp	±0.5 %		
Filase-to-fleutral voltage	Additional channels (V')	0.05 to 1.2 Vnp	±0.5 %	+	
Residual voltage	Additional charmers (v)	0.015 to 3 Vnp	±1 %		
Neutral point voltage		0.015 to 3 Vntp	±1 %		
Positive sequence voltage		0.013 to 3 Vntp	±2 %	+	
Negative sequence voltage		0.05 to 1.2 Vnp	±2 %	+	
Frequency	Main channels (f)	25 to 65 Hz	±0.01 Hz		
rrequericy	Additional channels (f')	45 to 55 Hz (fn = 50 Hz)	±0.01 Hz	+-	
	Additional charmers (i)	55 to 65 Hz (fn = 60 Hz)	±0.05 H2		
Active power (total or per pha	(42	0.008 Sn to 999 MW	±1 %		
Reactive power (total or per pina	*	0.008 Sn to 999 MVAR	±1 %	•	
Apparent power (total or per p		0.008 Sn to 999 MVA	±1 %	-	
Peak demand active power	, idooj	0.008 Sn to 999 MW	±1 %	+	
Peak demand active power Peak demand reactive power		0.008 Sn to 999 MVAR	±1 %	+	
Power factor		-1 to + 1 (CAP/IND)	±0.01		
		0 to 2.1 x 10 ⁸ MWh		+	
Calculated active energy		0 to 2.1 x 10° MVARh	±1 % ±1 digit ±1 % ±1 digit	+	
Calculated reactive energy		-30 °C to +200 °C	±1 °C from +20 to +140 °C		
Temperature		or -22 °F to +392 °F	±1,8 °F from +68 to +384 °F	-	
Rotation speed		0 to 7200 rpm	±1 rpm	_	
Network diagnosis ass	istance	0 to 1200 ip			
Tripping context				T	
Tripping current		0.02 to 40 In	±5 %		
Number of trips		0 to 65535	-		00
Negative sequence / unbalan	CO.	1 to 500 % of lb	±2 %		+
Total harmonic distortion, curr		0 to 100 %	±1 %		
Total harmonic distortion, volt		0 to 100 %	±1 %		
Phase displacement φ0 (betw		0 to 359°	±2°		
	•	0 to 359°	±2°		
Phase displacement φ1, φ2, Disturbance recording	φ3 (between v and i)	0 10 339	12		
Amplitude difference		0 to 1.2 Usync1	±1 %		-
Frequency difference		0 to 10 Hz	±0.5 Hz	+	
Phase difference		0 to 359°	±2°		
Out-of-sync context		0 10 359	IZ	_	
Machine operating ass	istance				1 -
	istance	0 to 800 %	14.0/	Ta.	
Thermal capacity used		(100 % for phase I = Ib)	±1 %	1-	
Remaining operating time bet	fore overload tripping	0 to 999 min	±1 min		
Waiting time after overload tri		0 to 999 min	±1 min		
Running hours counter / oper	11 3	0 to 65535 hours	±1 % or ±0.5 h		00
Starting current	ating time	1.2 lb to 40 ln	±5 %	_	
Starting time		0 to 300 s	±300 ms	_	-
Number of starts before inhibit	ition	0 to 60	10001115		+
Start inhibit time	idon	0 to 360 min	±1 min		
Differential current		0.015 to 40 ln	±1 %	+	
Through current		0.015 to 40 ln	±1 %	+	
Phase displacement θ1, θ2, θ	33 (hetween Land I')	0.013 to 40 iii	±2°	+	+
Apparent impedance Zd, Z21	,	0 to 200 kΩ	±5 %	+	+
Third harmonic neutral point v	<u>, , , , , , , , , , , , , , , , , , , </u>	0.2 to 30 % of Vnp	±1 %	+	+
Third harmonic residual voltage		0.2 to 90 % of Vnp	±1 %	+	+
Capacitance	9°	0.2 to 90 % of Vnp 0 to 30 F	±1 %	+	
Capacitance Capacitor unbalance current		0.02 to 40 I'n	±5 %	+	
Switchgear diagnosis	accietance	0.02 to 40 111	±5 %		
-	assistante	0 to 65525 kA2	+10.0/		00
Cumulative breaking current		0 to 65535 kA ²	±10 %	+	
Auxiliary supply		24 V DC to 250 V DC	±4 V or ±10 %	+	
Number of operations		0 to 4 x 10 ⁹	-	+	
Operating time		20 to 100 s	±1 ms	+	
Charging time		1 to 20 s	±0.5 s	+	
Number of rackouts		0 to 65535	-		100

 [□] available on MSA141 analog output module, according to setup
 □ saved in the event of auxiliary supply outage, even without battery
 □ saved by battery in the event of auxiliary supply outage.
 (1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cosφ > 0.8.

Protection

Description

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection. 2 modes:

- overcurrent protection sensitive to the highest phase current measured
- machine differential protection sensitive to the highest differential phase currents obtained in self-balancing schemes.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve
- with or without timer hold
- tripping confirmed or unconfirmed, according to parameter setting:

□ unconfirmed tripping: standard

☐ tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant 2-phase short-circuits

□ tripping confirmed by undervoltage protection (ANSI 27, unit 1), as backup for phase-to-phase short-circuits in networks with low short-circuit power.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values:

- ANSI 50N/51N: residual current calculated or measured by 3 phase current sensors
- ANSI 50G/51G: residual current measured directly by a specific sensor.

Characteristics

- 2 groups of settings
- definite time (DT), IDMT (choice of 17 standardized IDMT curves) or customized curve
- with or without timer hold
- second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current.

- sensitive protection to detect 2-phase faults at the ends of long lines
- protection of equipment against temperature buildup, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristi cs

- 1 definite time (DT) curve
- 9 IDMT curves: 4 IEC curves and 3 IEEE curves, 1 ANSI curve in RI² and 1 specific Schneider curve

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on

- machines (transformers, motors or generators)
- cables
- capacitors

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Thermal overload for machines - Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point
- adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves
- equipment heating and cooling time constants.

The cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Thermal overload for cables - Characteristics

- 1 group of settings
- cable current carrying capacity, which determines alarm and trip set points
- cable heating and cooling time constants.

Thermal overload for capacitors - Characteristics

- 1 group of settings
- alarm current, which determines the alarm set point
- overload current, which determines the tripping set point
- hot tripping time and current setting, which determine a point on the tripping curve.

ANSI 51C - Capacitor bank unbalance

Detection of capacitor step internal faults by measuring the unbalance current flowing between the two neutral points of a step connected in a double star arrangement. Four unbalance currents can be measured to protect up to 4 steps.

Characteristics

- 2 set points per step
- definite time (DT) curve.

Protection

Description

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semi-permanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed.

Recloser operation is easy to adapt for different operating modes by parameter setting.

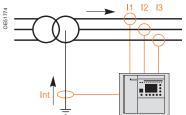
Characteristics

- 1 to 4 reclosing cycles, each cycle has an adjustable dead time
- adjustable, independent reclaim time and safety time until recloser ready time delays
- cycle activation linked to instantaneous or timedelayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting
- inhibition/locking out of recloser by logic input.

Synchro-check

ANSI 25

This function checks the voltages upstream and downstream of a circuit breaker and allows closing when the differences in amplitude, frequency and phase are within authorized limits.


Characteristics

- adjustable and independent set points for differences in voltage, frequency and phase
- adjustable lead time to take into account the circuitbreaker closing time
- 5 possible operating modes to take no-voltage conditions into account.

Differential protection functions

ANSI 64REF - Restricted earth fault differential

Detection of phase-to-earth faults on 3-phase windings with earthed neutral, by comparison of residual current calculated from the 3 phase currents and residual current measured at the neutral point.

Characteristics

- instantaneous tripping
- percentage-based characteristic with fixed slope and adjustable low set point
- more sensitive than transformer or machine differential protection.

ANSI 87T - Transformer and transformer-machine unit differential (2 windings)

Phase-to-phase short-circuit protection of two-winding transformers or transformer-machine units.

Protection based on phase by phase comparison of the primary and secondary currents with:

- amplitude and phase correction of the currents in each winding according to the transformer vector shift and the voltage values set
- clearance of zero sequence current from the primary and secondary windings (suitable for all earthing systems).

Characteristics

- instantaneous tripping
- adjustable high set point for fast tripping for violent faults, with no restraint
- percentage-based characteristic with two adjustable slopes and adjustable low set point
- restraint based on percentage of harmonics. These restraints prevent nuisance tripping during transformer energizing, during faults outside the zone that provoke saturation of the current transformers and during operation of a transformer supplied with excessive voltage (overfluxing).

□ self-adapting neural network restraint: this restraint analyzes the percentage of harmonics 2 and 5 as well as differential and through currents

 $\hfill \square$ restraint based on the percentage of harmonic 2 per phase or total

□ restraint based on the percentage of harmonic 5 per phase or total.

Self-adapting restraint is exclusive with respect to restraints on the percentage of harmonic 2 or on the percentage of harmonic 5.

- restraint on energization. This restraint, based on the magnetizing current of the transformer or on a logic equation or Logipam, ensures stability of transformers that have low harmonic percentages on energization
- fast restraint upon loss of sensor.

ANSI 87M - Machine differential

Phase-to-phase short-circuit protection, based on phase by phase comparison of the currents on motor and generator windings.

Characteristics

- instantaneous tripping
- fixed high set point for fast tripping for violent faults, with no restraint
- percentage-based characteristic with fixed slope and adjustable low set point
- tripping restraint according to percentage characteristic activated by detection of:
- □ external fault or machine starting
- □ sensor saturation or disconnection
- □ transformer energizing (harmonic 2 restraint)

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve
- with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault
- with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 2 types of operation:

- type 1, projection
- type 2, according to the magnitude of the residual current phasor.

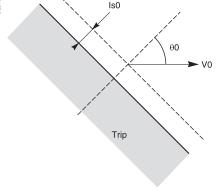
ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

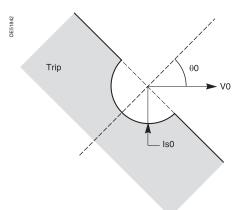
Type 1 characteristics

b 2 groups of settings

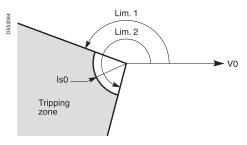
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold
- \blacksquare with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.


ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.


It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

Type 2 characteristics


- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve
- choice of tripping direction
- with or without timer hold.

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle q0 % 0°).

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle g0 ¼ 0°).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

This protection function complies with the Enel DK5600 specification.

Type 3 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Protection

Description

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

- active overpower protection to detect overloads and allow load shedding
- reverse active power protection:

□ against generators running like motors when the generators consume active power

against motors running like generators when the motors supply active power.

ANSI 32Q - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines:

- reactive overpower protection for motors which consume more reactive power with field loss
- reverse reactive overpower protection for generators which consume reactive power with field loss.

ANSI 37P - Directional active underpower

Two-way protection based on calculated active power Checking of active power flows:

- to adapt the number of parallel sources to fit the network load power demand
- to create an isolated system in an installation with its own generating unit.

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

- locked rotor due to motor load (e.g. crusher):
- □ in normal operation, after a normal start

 \square directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

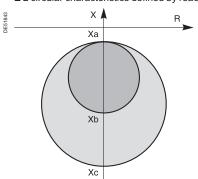
ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

☐ starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)


■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 40 - Field loss (underimpedance)

Protection of synchronous machines against field loss, based on the calculation of positive sequence impedance on the machine terminals or transformer terminals in the case of transformer-machine units.

Characteristics

■ 2 circular characteristics defined by reactances Xa, Xb and Xc

2 circular tripping characteristics of ANSI 40 protection.

- tripping when the machine's positive sequence impedance enters one of the circular characteristics.
- definite (DT) time delay for each circular characteristic
- setting assistance function included in SFT2841 software to calculate the values of Xa, Xb and Xc according to the electrical characteristics of the machine (and transformer, when applicable).

ANSI 78PS - Pole slip

Protection against loss of synchronism on synchronous machines, based on calculated active power. 2 types of operation:

- tripping according to the equal-area criterion, time-delayed
- tripping according to power swing (number of active power swings):

 $\hfill \square$ suitable for generators capable of withstanding high electrical and mechanical constraints

□ to be set as a number of rotations.

The 2 types of operation may be used independently or at the same time.

ANSI 12 - Overspeed

Detection of machine overspeed, based on the speed calculated by pulse-counting, to detect synchronous generator racing due to loss of synchronism, or for process monitoring, for example.

ANSI 14 - Underspeed

Machine speed monitoring based on the speed calculated by pulse-counting:

- detection of machine underspeed after starting, for process monitoring, for example
- zero speed data for detection of locked rotor upon starting.

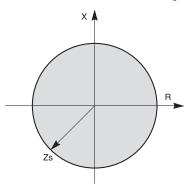
ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve
- with or without timer hold.

ANSI 21B - Underimpedance


Phase-to-phase short-circuit protection, for generators, based on the calculation of apparent phase-to-phase impedance.

$$Z21 = \frac{U21}{I2 - I1}$$

apparent impedance between phases 1 and 2.

Characteristics

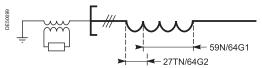
■ circular characteristic centered at origin defined by adjustable set point Zs

Circular tripping characteristic of ANSI 21B protection.

■ time-delayed definite time (DT) tripping when one of the three apparent impedances enters the circular tripping characteristic.

ANSI 50/27 - Inadvertent energization

Checking of generator starting sequence to detect inadvertent energization of generators that are shut down (a generator which is energized when shut down runs like a motor).


Consists of an instantaneous phase overcurrent protection confirmed by a timedelayed undervoltage protection function.

ANSI 64G - 100 % stator earth fault

Protection of generators with earthed neutral against phase-to-earth insulation faults in stator windings. This function may be used to protect generators connected to step-up transformers

 $100\ \%$ stator earth fault is a combination of two protection functions:

- ANSI 59N/64G1: neutral voltage displacement, protection of 85 % to 90 % of the stator winding, terminal end.
- ANSI 27TN/64G2: thrid harmonic undervoltage, protection of 10 % to 20 % of the stator winding, neutral point end.

Stator winding of a generator protected 100 % by the combination of ANSI 59N and ANSI 27TN protection functions.

ANSI 27TN/64G2 - Third harmonic undervoltage

Protection of generators with earthed neutral against phase-to-earth insulation faults, by the detection of a reduction of third harmonic residual voltage.

Protects the 10 to 20 % of the stator winding, neutral point end, not protected by the ANSI 59N/64G1 function, neutral voltage displacement.

Characteristics

- choice of 2 tripping principles, according to the sensors used:
- $\ \square$ fixed third harmonic undervoltage set point
- □ adaptive neutral and terminal third harmonic voltage comparator set point
- time-delayed definite time (DT) tripping

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.

Characteristics

- 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Protection

Description

Voltage protection functions

ANSI 24 - Overfluxing (V/Hz)

Protection which detects overfluxing of transformer or generator magnetic circuits by calculating the ratio between the greatest phase-to-neutral or phase-to-phase voltage divided by the frequency.

Characteristics

- machine coupling to be set up
- definite time (DT) or IDMT time delays (choice of 3 curves).

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

Characteristics

- definite time (DT) curve
- IDMT curve.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage

- ANSI 59N: in isolated neutral systems
- ANSI 59N/64G1: in stator windings of generators with earthed neutral. Protects the 85 % to 90 % of the winding, terminal end, not protected by the ANSI 27TN/64G2 function, third harmonic undervoltage.

Characteristics

- definite time (DT) curve
- IDMT curve.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

Frequency protection functions

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

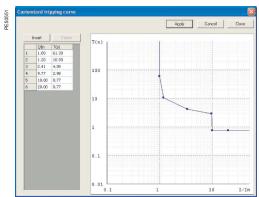
Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

- protect the generators from a reconnection without checking synchronization
- avoid supplying loads outside the installation.

Load shedding


The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

- either accelerate shedding in the event of a large overload
- or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Functions Sepam series 80

Protection

Tripping curves

Customized tripping curve set using SFT2841 software.

Equation

$$t d(1) = \frac{k}{(1)^{\alpha}} \times \frac{T}{\beta}$$

Customized tripping curveDefined point by point using the SFT2841 setting and operating software tool, this curve may be used to solve all special cases involving protection coordination or revamping.

IDMT tripping curves

Current IDM T tripping curves

Multiple IDMT tripping curves are offered, to cover most applications:

- IEC curves (SIT, VIT/LTI, EIT)
- IEEE curves (MI, VI, EI)
- usual curves (UIT, RI, IAC).

IEC curves

Curve type	Coefficient values			
	k	α	β	
Standard inverse / A	0.14	0.02	2.97	
Very inverse / B	13.5	1	1.50	
Long time inverse / B	120	1	13.33	
Extremely inverse / C	80	2	0.808	
Ultra inverse	315.2	2.5	1	

RI curve

Equation:

$$td(I) = \frac{1}{0.339 - 0.236 \left(\frac{I}{Is}\right)^{-1}} \times \frac{T}{3,1706}$$

IEEE curves

Equation	Curve type	Coefficie	Coefficient values		
		Α	В	р	β
	Moderately inverse	0.010	0.023	0.02	0.241
A - T	Very inverse	3.922	0.098	2	0.138
$td(I) = \left \frac{A}{I B} + B \right \times \frac{B}{B}$	Extremely inverse	5.64	0.0243	2	0.081
(s -1)					

IAC curves

Equation	Curve type	Coeffici	ent values	;			
		Α	В	С	D	E	β
	Inverse	0.208	0.863	0.800	-0.418	0.195	0.297
A. B. D. E.T	Very inverse	0.090	0.795	0.100	-1.288	7.958	0.165
$td(I) = \begin{vmatrix} A + \frac{B}{(1-C)} + \frac{B}{(1-C)^2} + \frac{E}{(1-C)^3} \end{vmatrix} x \frac{I}{\beta}$	Extremely inverse	0.004	0.638	0.620	1.787	0.246	0.092

Protection

Tripping curves

t(s) 101,21 T = 2,1010 (A)

EPATR-C Standard curve (logarithmic scale).

t(s) 100 24 10 T = 0.810 (A) 0,6 0,8 Is0 6,4

EPATR-B Standard curve (logarithmic scale).

Equation for EPATRB, EPATRC

EPATRB

For 0,6 A ≤ I0 ≤ 6,4 A

$$td(10) = \frac{85,386}{10^{0,975}}x\frac{T}{0,8}$$

For 6,4 A ≤ Io ≤ 200,0 A

$$td(I0) = \frac{140, 213}{I0^{0.975}} x \frac{T}{0.8}$$

For I0 > 200,0 A td(I0) = T

EPATRC

For $0,6 A \le 10 \le 200,0 A$

$$td(10) = 72 \times 10^{-2.8} x \frac{T}{2.10}$$

For I0 > 200,0 A td(I0) = T

Equation for ANSI 27 - undervoltage

Equation for ANSI 27 - undervoltage

Equation for ANSI 59N - Neutral voltage displacement

$$td(I) = \frac{T}{1 - \left(\frac{V}{Vs}\right)}$$

$$td(I) = \frac{T}{\left(\frac{V}{Vs}\right)_{-}}$$

Voltage/frequency ratio IDMT tripping curves

With G =	V/f or U/f
td(G)=	$\frac{1}{\left(\frac{G}{Gs}-1\right)^p} x T$

Curve type	P
Α	0.5
В	1
С	2

Protection

Main characteristics

Setting of IDMT tripping curves,

time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x Is
- TMS factor, factor shown as T/b in the equations on the left.

Timer hold

The adjustable timer hold T1 is used for:

- detection of restriking faults (DT curve)
- coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

I > Is time delayed output I > Is pick-up signal The signal output The signal output The signal output The signal output Tripping Value of internal time delay counter

Detection of restriking faults with adjustable timer hold.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link.

Example of use: normal / backup mode network

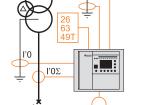
- group A for network protection in normal mode, when the network is supplied by the utility
- group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

- transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)
- motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.


Measurement origin

The measurement origin needs to be indicated for each unit of the protection functions that may use measurements of different origins.

The setting links a measurement to a protection unit and allows the protection units to be distributed optimally among the measurements available according to the sensors connected to the analog inputs.

Example: distribution of ANSI 50N/51N function units for transformer earth fault protection:

- 2 units linked to measured I0 for transformer primary protection
- 2 units linked to measured I'0 for transformer secondary protection
- 2 units linked to IOS for protection upstream of the transformer
- 2 units linked to I'0S for protection downstream of the transformer.

Measurement origin: example.

Summary table

3	
Characteristics	Protection functions
2 groups of settings A et B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
EPATR curves	50N/51N
Voltage IDMT curves	27, 59N, 24
Customized curve	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2

ProtectionSetting ranges

Functions	Settings		Time delays
ANSI 12 - Overspeed			
	100 to 160 % of Wn		1 to 300 s
ANSI 14 - Underspeed			
4N0104B 11 1 : 1	10 to 100 % of Wn		1 to 300 s
ANSI 21B - Underimpedance Impedance Zs	0.05 to 2.00 Vn/lb		
ANSI 24 - Overfluxing (V/Hz)	0.05 to 2.00 Vn/ib		
Tripping curve	Definite time		
ppg ca. vo	IDMT type A, B or C		
Gs set point	1.03 to 2 pu	Definite time	0.1 to 20000 s
		IDMT	0.1 to 1250 s
ANSI 25 - Synchro-check			
Measured voltages	Phase-to-phase	Phase-to-neutral	
Rated primary phase-to-phase voltage Unp sync1 (Vnp sync1 = Unp sync1/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Unp sync2 (Vnp sync2 = Unp sync2/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Rated secondary phase-to-phase volta		220 1 10 200 11	
Uns sync1	90 V to 120 V	90 V to 230 V	
Uns sync2	90 V to 120 V	90 V to 230 V	
Synchro-check setpoints			
dUs set point	3 % to 30 % of Unp sync1	3 % to 30 % of Vnp sync1	
dfs set point	0.05 to 0.5 Hz	0,05 to 0,5 Hz	
dPhi set point Us high set point	5 to 80° 70 % to 110 % Unp sync1	5 to 80° 70 % to 110 % Vnp sync1	
Us low set point	10 % to 70 % Unp sync1	10 % to 70 % Vnp sync1	
Other settings	10 // to 70 // Chip Sylle i	10 /0 to 70 /0 viip syllo i	
Lead time	0 to 0.5 s	0 to 0.5 s	
Operating modes: no-voltage conditions	Dead1 AND Live2	Dead1 AND Live2	
for which coupling is allowed	Live1 AND Dead2	Live1 AND Dead2	
	Dead1 XOR Dead2	Dead1 XOR Dead2	
	Dead1 OR Dead2	Dead1 OR Dead2	
	Dead1 AND Dead2	Dead1 AND Dead2	
ANSI 27 - Undervoltage (L-L) or (•		
Tripping curve	Definite time IDMT		
Set point	5 to 100 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chann	nels (U')	0.03 to 300 s
ANSI 27D - Positive sequence un	· ,	()	
Set point and time delay	15 to 60 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chann	iels (U')	
ANSI 27R - Remanent undervolta	age		
Set point and time delay	5 to 100 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chann	iels (U')	
ANSI 27TN/64G2 - Third harmoni			
	0.2 to 20 % of Vntp		0.05 to 300 s
K set point (adaptive) Positive sequence undervoltage	0.1 to 0.2		0.05 to 300 s
Minimum apparent power	50 to 100 % of Unp 1 to 90 % of Sb (Sb = 3.Un.lb)	<u> </u>	
ANSI 32P - Directional active ove			
AIVOI OZI - Directional active ove	1 to 120 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 32Q - Directional reactive o			0.10100000
7	5 to 120 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 37 - Phase undercurrent			
	0.05 to 1 lb		0.05 to 300 s
ANSI 37P - Directional active und	derpower		
	5 to 100 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 38/49T - Temperature moni	toring		
Alarm set point TS1	0 °C to 180 °C or 32 °F to 356 °F		
Trip set point TS2	0 °C to 180 °C or 32 °F to 356 °F		
ANSI 40 - Field loss (underimped	•		
Common point: Xa	0.02 Vn/lb to 0.2 Vn/lb + 187.5 kΩ		0.051, 000
Circle 1: Xb	0.2 Vn/lb to 1.4 Vn/lb + 187.5 kΩ		0.05 to 300 s
Circle 2: Xc	0.6 Vn/lb to 3 Vn/lb + 187.5 kΩ		0.1 s to 300 s
(1) $Sn = \sqrt{3}.In.Unp.$			

ProtectionSetting ranges

Functions	Settings		Time delay	S
ANSI 46 - Negative sequence / u				
ripping curve	Definite time			
ppg carro	Schneider Electric			
	IEC: SIT/A, LTI/B, VIT/B, EIT/C			
	IEEE: MI (D), VI (E), EI (F)			
	RI ² (setting constant from 1 to 100)			
and point	0.1 to 5 lb	Definite time	0.1 to 300 s	
s set point	0.1 to 5 lb (Schneider Electric)	IDMT	0.1 to 1s	
		IDIVII	0.110 18	
	0.1 to 1 lb (IEC, IEEE)			
La company and a studio	0.03 to 0.2 lb (RI ²) Main channels (I) or additional channel	- L- (II)		
leasurement origin	()	els (I)		
ANSI 47 - Negative sequence ov	9		0.054-200-	
et point and time delay	1 to 50 % of Unp	- L- (U)	0.05 to 300 s	
leasurement origin	Main channels (I) or additional channel	eis (I)		
ANSI 48/51LR -Locked rotor / ex	•			
s set point	0.5 lb to 5 lb	ST starting time	0.5 to 300 s	
		LT and LTS time delays	0.05 to 300 s	
ANSI 49RMS - Thermal overload				
dmissible current	1 to 1.73 lb			
ime constant T1	1 to 600 mn			
ANSI 49RMS - Thermal overload	d for capacitors			
larm current		1.05 lb to 1.70 lb		
rip current		1.05 lb to 1.70 lb		
ositioning of the hot tripping curve	Current setting	1.02 x trip current to 2 lb		
	Time setting	1 to 2000 minutes (variable range depe	ending on the trip cu	rrent and current
		setting)		
ANSI 49RMS - Thermal overload	d for machines		Mode 1	Mode 2
accounting for negative sequence comp	ponent	0 - 2.25 - 4.5 - 9		
ïme constant	Heating		T1: 1 to 600 mn	T1: 1 to 600 mn
	Cooling		T2: 5 to 600 mn	T2: 5 to 600 mn
larm and tripping set points (Es1 and E	(s2)	0 to 300 % of rated thermal capacity		
nitial thermal capacity used (Es0)		0 to 100 %		
witching of thermal settings condition		by logic input		
		by Is set point adjustable from 0.25 to 8	3 lb	
Maximum equipment temperature		60 to 200 °C (140 °F to 392 °F)		
leasurement origin	Main channels (I) or additional channel	els (l')		
ANSI 50BF - Breaker failure				
Presence of current	0.2 to 2 In			
Operating time	0.05 s to 3 s			
ANSI 50/27 - Inadvertent energia	zation			
s set point	0.05 to 4 In			
's set point	10 to 100 % Unp		T1: 0 to 10 s	
	,		T2: 0 to 10 s	
ANSI 50/51 - Phase overcurrent				
	Tripping time delay	Timer hold		
ripping curve	Definite time	DT		
	SIT, LTI, VIT, EIT, UIT (1)	DT		
	RI	DT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT		
		DT or IDMT		
	IEEE: MI (D), VI (E), EI (F)			
	IA: I, VI, EI	DT or IDMT		
and a state	Customized	DT De Ceite tiere	L-1-0.05 1.000	\ -
s set point	0.05 to 24 ln	Definite time	Inst; 0.05 s to 300	
	0.05 to 2.4 ln	IDMT	0.1 s to 12.5 s at	
imer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300) s
	IDMT (IDMT; reset time)		0.5 s to 20 s	
leasurement origin	Main channels (I) or additional channel	els (l')		
onfirmation	None			
	By negative sequence overvoltage By phase-to-phase undervoltage			

ProtectionSetting ranges

Functions	Settings		Time delays
ANSI 50N/51N or 50G/51G	- Earth fault		
	Tripping time delay	Timer hold	
ripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	EPATR-B, EPATR-C	DT	
	Customized	DT	
	0.6 to 5 A	EPATR-B	0.5 to 1 s
	0.6 to 5 A	EPATR-C	0.1 to 3 s
0 set point	0.01 to 15 In0 (min. 0.1 A)	Definite time	Inst; 0.05 s to 300 s
o corponi	0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 ls0
mer hold	Definite time (DT; timer hold)	IDWI	Inst; 0.05 s to 300 s
mer noid	IDMT (IDMT; reset time)		0.5 s to 20 s
laceurement origin	<u> </u>	ents $I0\Sigma$ or sum of phase currents $I'0\Sigma$	0.0310203
easurement origin		ents 102 or sum or phase currents 1 02	
ANSI 50V/51V - Voltage-res			
	Tripping time delay	Timer hold	
ripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC : SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	Customized	DT	
set point	0.5 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.5 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
imer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
leasurement origin	Main channels (I) or additional chann	nels (l')	
ANSI 51C - Capacitor bank			
set point	0.05 A to 2 I'n	Definite time	0.1 to 300 s
ANSI 59 - Overvoltage (L-L		Domino unio	0.110 000 0
et point and time delay	50 to 150 % of Unp or Vnp		0.05 to 200 o
<u> </u>		anala (LP)	0.05 to 300 s
leasurement origin	Main channels (U) or additional chan	ineis (U)	
ANSI 59N - Neutral voltage			
ripping curve	Definite time		
	IDMT		
	2 to 80 % of Unp	Definite time	0.05 to 300 s
et point		IDMT	
et point	2 to 10 % of Unp	IDMT	0.1 to 100 s
·			0.1 to 100 s
leasurement origin	2 to 10 % of Unp Main channels (U), additional channel		0.1 to 100 s
leasurement origin ANSI 64REF - Restricted ea	2 to 10 % of Unp Main channels (U), additional channel		0.1 to 100 s
leasurement origin ANSI 64REF - Restricted ea	2 to 10 % of Unp Main channels (U), additional channel arth fault differential		0.1 to 100 s
leasurement origin ANSI 64REF - Restricted ea	2 to 10 % of Unp Main channels (U), additional channe arth fault differential 0.05 to 0.8 In (In ≥ 20 A)	els (U') or neutral-point voltage Vnt	0.1 to 100 s
leasurement origin ANSI 64REF - Restricted ea 60 set point leasurement origin	2 to 10 % of Unp Main channels (U), additional channe arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A)	els (U') or neutral-point voltage Vnt	0.1 to 100 s
leasurement origin ANSI 64REF - Restricted ea 0 set point leasurement origin ANSI 66 - Starts per hour	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional cha	els (U') or neutral-point voltage Vnt annels (I', I'0)	
leasurement origin ANSI 64REF - Restricted ea 0 set point leasurement origin ANSI 66 - Starts per hour otal number of starts	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (1, 10) or additional channels	els (U') or neutral-point voltage Vnt annels (I', I'0) Period	1 to 6 h
leasurement origin ANSI 64REF - Restricted each of set point leasurement origin ANSI 66 - Starts per hour otal number of starts	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional cha	els (U') or neutral-point voltage Vnt annels (I', I'0)	
deasurement origin ANSI 64REF - Restricted east of set point deasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts Tripping as of 1.2 ls.	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60) 1 to 60	els (U') or neutral-point voltage Vnt annels (I', I'0) Period	1 to 6 h
leasurement origin ANSI 64REF - Restricted each of set point leasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60	els (U') or neutral-point voltage Vnt annels (I', I'0) Period	1 to 6 h
leasurement origin ANSI 64REF - Restricted ea 0 set point leasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 e overcurrent 30°, 45°, 60°	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start	1 to 6 h
easurement origin ANSI 64REF - Restricted easons of the seasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts of the seasurement or seasons of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay	1 to 6 h
easurement origin ANSI 64REF - Restricted each of set point easurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT	1 to 6 h
easurement origin ANSI 64REF - Restricted each of set point easurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT	1 to 6 h
leasurement origin ANSI 64REF - Restricted ea 0 set point leasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT	1 to 6 h
leasurement origin ANSI 64REF - Restricted each of set point leasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I to 60 1 to 60 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1)	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT	1 to 6 h
leasurement origin ANSI 64REF - Restricted each of set point leasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 In (In ≥ 20 A) 0.1 to 0.8 In (In < 20 A) Main channels (I, I0) or additional channels 1 to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT	1 to 6 h
leasurement origin ANSI 64REF - Restricted each of set point leasurement origin ANSI 66 - Starts per hour otal number of starts umber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase haracteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channels (I,	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT DT or IDMT	1 to 6 h
deasurement origin ANSI 64REF - Restricted east of set point deasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts Tripping as of 1.2 ls. ANSI 67 - Directional phase tharacteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channel 1 to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (I) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F)	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT or IDMT DT or IDMT	1 to 6 h
Measurement origin ANSI 64REF - Restricted easo set point Measurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase characteristic angle ripping curve	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channel 1 to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI Customized	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT or IDMT	1 to 6 h 0 to 90 mn
Measurement origin ANSI 64REF - Restricted easo set point Measurement origin ANSI 66 - Starts per hour fotal number of starts Number of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channel 1 to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI Customized 0.1 to 24 ln	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT DT Definite time	1 to 6 h 0 to 90 mn
Measurement origin ANSI 64REF - Restricted easts of set point Measurement origin ANSI 66 - Starts per hour Total number of starts Number of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle Tripping curve	2 to 10 % of Unp Main channels (U), additional channel arth fault differential 0.05 to 0.8 ln (ln ≥ 20 A) 0.1 to 0.8 ln (ln < 20 A) Main channels (I, I0) or additional channel 1 to 60 1 to 60 e overcurrent 30°, 45°, 60° Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT (1) RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI Customized	els (U') or neutral-point voltage Vnt annels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT or IDMT	1 to 6 h 0 to 90 mn

ProtectionSetting ranges

Functions	S	Settings		Time
ANSI 67N/67	7NC - Directional earth fault, proje			
Characteristic a		-45°, 0°, 15°, 30°, 45°, 60°, 90°		
Is0 set point		0.01 to 15 In0 (mini. 0,1 A)	Definite time	Inst; 0.05 s to 300 s
Vs0 set point		2 to 80 % of Unp		
Memory time		T0mem time	0; 0.05 s to 300 s	
,		V0mem validity set point	0; 2 to 80 % of Unp	
Measurement o	rigin	10 input, I'0 input		
ANSI 67N/67	7NC - Directional earth fault, acco	ording to I0 vector magnitude (typ	pe 2)	
Characteristic a	ngle	-45°, 0°, 15°, 30°, 45°, 60°, 90°	·	
		Tripping time delay	Timer hold delay	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
		RI	DT	
		IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
		IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
		IAC: I, VI, EI	DT or IDMT	
		Customized	DT	
Is0 set point		0.1 to 15 In0 (min. 0.1 A)	Definite time	Inst; 0.05 s to 300 s
		0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 Is0
Vs0 set point		2 to 80 % of Unp		
Timer hold		Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
		IDMT (IDMT; reset time)		0.5 s to 20 s
Measurement o		10 input, I'0 input or sum of phase curre		
	7NC type 3 - Directional earth faul		ide directionalized on a tr	ripping sector
Tripping sector		0° to 359°		
Tripping sector	-	0° to 359°		
Is0 set point	CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst; 0.05 s to 300 s
	1ACT	0.005 to 15 In0 (min. 0.1 A)		
1/-011-1	Core balance CT + ACE990 (range 1)	0.01 to 15 In0 (min. 0.1 A)	0.400.0/ -5114	
Vs0 set point		Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
Magazzamanta	wind in	Measured V0 (external VT) 10 input or I'0 input	0.6 to 80 % of Unp	
Measurement o ANSI 78PS -		10 Iliput of 10 Iliput		
	•	0.1 to 200 o		
	e equal-area criterion per of power swings	0.1 to 300 s 1 to 30		
		1 to 300 s		
Time between 2		110 300 \$		
	Overfrequency	50 to 55 Hz or 00 to 05 Hz		0.44000
Set point and tin	<u> </u>	50 to 55 Hz or 60 to 65 Hz	In (I P)	0.1 to 300 s
Measurement o		Main channels (U) or additional channel	els (U)	
	Inderfrequency	40.42 50.11- 22 50.42 00.11-		0.44000
Set point and tin Measurement o		40 to 50 Hz or 50 to 60 Hz Main channels (U) or additional channe	No (LP)	0.1 to 300 s
	5	Main channels (U) or additional channel	eis (U)	
ANSIGIR-F	Rate of change of frequency	0.1 to 10 Hz/s		0.45 += 200 =
ANCIOZM I	Machine différential	0.1 to 10 Hz/s		0.15 to 300 s
	Machine différential	0.05 to 0.5 lp (l= :: 20.4)		
lds set point		0.05 to 0.5 ln (ln u 20 A)		
ANGLOTT T	ransformer differential	0.1 to 0.5 ln (ln < 20 A)		
	ransionner unierential	2 to 19 lp1		
High set point	acod ourvo	3 to 18 ln1		
Percentage-b Ids set point	aseu curve	30 to 100 % In1		
Slope Id/It		15 to 50 %		
Slope Id/It2		without, 50 to 100 %		
Slope change po	oint	1 to 18 ln1		
Restraint on e				
Current thresho	•	1 to 10 %		
Delay		0 to 300 s		
Restraint on 0	CT loss			
Activity		On / Off		
	taux d'harmoniques	Classic	Self-adapting	
Choice of restra	•	Classic	Self-adapting Self-adapting	
High set point		On	On / Off	
	centage set point	off, 5 to 40 %		
Harmonic 2 rest		per phase / total		
	centage set point	off, 5 to 40 %		
Harmonic 5 rest		per phase / total		

Control and monitoringDescription

Sepam performs all the control and monitoring functions required for electrical network operation:

- the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.
- the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:

 □ logic equation editor, to adapt and complete the predefined control and monitoring functions

□ creation of personalized messages for local annunciation

□ creation of personalized mimic diagrams corresponding to the controlled devices □ customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages

■ with the Logipam option, Sepam can provide the most varied control and monitoring functions, programmed using the SFT2885 programming software that implements the Logipam ladder language.

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

■ acquisition of input data:

□ results of protection function processing

□ external logic data, connected to the logic inputs of an optional MES120 input / output module

□ local control orders transmitted by the mimic-based UMI

□ remote control orders (TC) received via the Modbus communication link

- actual processing of the control and monitoring function
- utilization of the processing results:

□ activation of outputs to control a device

□ information sent to the facility manager:

- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link
- by real-time indications on device status on the animated mimic diagram.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 5 outputs included in the Sepam series 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 logic inputs and 6 output relays.

After the number of MES120 modules required for the needs of an application is set, the logic inputs are assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Maximum Sepam series 80 configuration with 3 MES120 modules: 42 inputs and 23 outputs.

Control and monitoring

Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

Control of breaking devices equipped with different types of closing and tripping coils:

- circuit breakers with shunt or undervoltage trip coils
- latching contactors with shunt trip coils
- contactors with latched orders.

The function processes all breaking device closing and tripping conditions, based on:

■ protection functions

conditions.

- breaking device status data
- remote control orders
- specific control functions for each application (e.g. recloser, synchro-check). The function also inhibits breaking device closing, according to the operating

Automatic transfer (AT)

This function transfers busbar supply from one source to another. It concerns substations with two incomers, with or without coupling.

The function carries out:

- automatic transfer with a break if there is a loss of voltage or a fault
- manual transfer and return to normal operation without a break, with or without synchro-check
- control of the coupling circuit breaker (optional)
- selection of the normal operating mode
- the necessary logic to ensure that at the end of the sequence, only 1 circuit breaker out of 2 or 2 out of 3 are closed.

The function is distributed between the two Sepam units protecting the two incomers. The synchro-check function (ANSI 25) is carried out by the optional MCS025 module, in conjunction with one of the two Sepam units.

Load shedding - Automatic restart

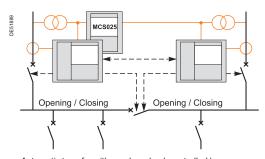
Automatic load regulation on electrical networks by load shedding followed by automatic restarting of motors connected to the network

Load shedding

The breaking device opens to stop motors in case of:

- detection of a network voltage sag by the positive sequence undervoltage
- protection function ANSI 27D
- receipt of a load shedding order on a logic input.

Automatic restart


The motors disconnected as a result of the network voltage sag are automatically restarted:

- after the return of network voltage is detected by the positive sequence undervoltage protection function ANSI 27D
- and a time delay has run out, so as to stagger motor restarts.

De-excitation

Interruption of a synchronous generator's excitation supply and tripping of the generator breaking device in case of:

- \blacksquare detection of an internal generator fault
- detection of an excitation system fault
- receipt of a de-excitation order on a logic input or via the communication link.

Automatic transfer with synchro-check controlled by Sepam series 80.

Control and monitoring

Description of predefined functions

Genset shutdown

Shutdown of the driving machine, tripping of the breaking device and interruption of the generator excitation supply in case of:

- detection of an internal generator fault
- receipt of a genset shutdown order on a logic input or via the communication link.

Control of capacitor banks

This function controls 1 to 4 switches for capacitor steps, taking into account all the closing and tripping conditions determined by the ANSI 94/69 function for control of the switchgear.

Manual or automatic control, controlled by an external reactive-energy regulator.

ANSI 68 - Logic discrimination

This function provides:

- perfect tripping discrimination with phase-to-phase and phase-to-earth short-circuits, on all types of network
- faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

- sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)
- and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

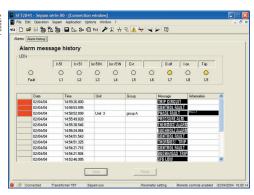
ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the key
- remotely via a logic input
- or via the communication link.


The Latching/acknowledgement function, when combined with the circuit breaker/contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Local indications on the Sepam front panel.

SFT2841: alarm history.

ANSI 30 - Local annunciation

LED indication

■ 2 LEDs, on the front and back of Sepam, indicate the unit operating status, and are visible when a Sepam without a UMI is mounted inside the LV compartment, with access to connectors:

☐ green LED ON: Sepam on

□ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)

■ 9 yellow LEDs on the Sepam front panel:

□ pre-assigned and identified by standard removable labels

☐ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam display

Events and alarms may be indicated locally on Sepam's advanced UMI or on the mimic-based UMI by:

- messages on the display unit, available in 2 languages:
- ☐ English, factory-set messages, not modifiable
- \square local language, according to the version delivered (the language version is chosen when Sepam is set up)
- the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

- to clear the message from the display, press the key
- \blacksquare after the fault has disappeared, press the key: the light goes off and Sepam is reset
- \blacksquare the list of alarm messages remains accessible (key) and may be cleared by pressing the key.

Control and monitoring

Description of predefined functions

Local control using the mimic-based UMI.

Local control using the mimic-based UMI

Sepam control mode

A key-switch on the mimic-based UMI is used to select the Sepam control mode. Three modes are available: Remote, Local or Test. In Remote mode:

- remote control orders are taken into account
- \blacksquare local control orders are disabled, with the exception of the circuit-breaker open order.

In Local mode:

- remote control orders are disabled, with the exception of the circuit-breaker open order
- local control orders are enabled.

Test mode should be selected for tests on equipment, e.g. during preventivemaintenance operations:

- all functions enabled in Local mode are available in Test mode
- no remote indications (TS) are sent via the communication link.

The Logipam programming software can be used to customize control-mode processing.

View device status on the animated mimic diagram

For safe local control of devices, all information required by operators can be displayed simultaneously on the mimic-based UMI:

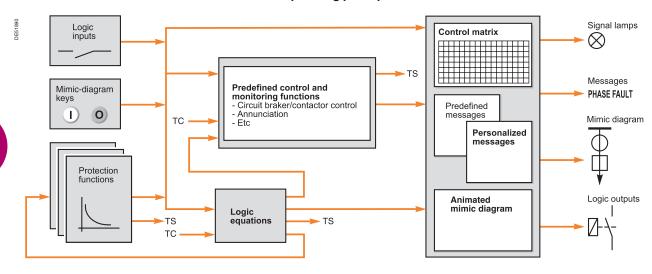
- single-line diagram of the equipment controlled by Sepam, with an animated, graphic indication of device status in real time
- the desired current, voltage and power measurements.

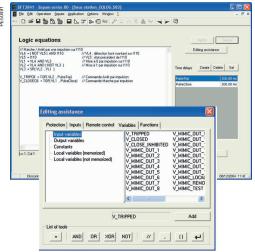
The local-control mimic diagram can be customized by adapting one of the supplied, predefined diagrams or by creating a diagram from scratch.

Local control of devices

All the devices for which opening and closing are controlled by Sepam can be controlled locally using the mimic-based UMI.

The most common interlock conditions can be defined be logic equations or by Logipam.


The sure and simple operating procedure is the following:


- select the device to be controlled by moving the selection window using the keys
- or Sepam checks whether local control of the selected device is authorized and informs the operator (selection window with a solid line)
- selection confirmation for the device to be controlled by pressing the key <a>(the selection window flashes)
- device control by pressing:

 \square or key \bigcirc : close order.

- logic equation editor, to adapt and complete the predefined control and monitoring functions
- creation of personalized messages for local annunciation
- creation of custom mimic diagrams corresponding to the controlled devices
- customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages.

Operating principle

SFT2841: logic equation editor.

Logic equation editor

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- □ conditional inhibition/validation of functions
- adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- \blacksquare local control orders transmitted by the mimic-based UMI
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- \blacksquare transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Control and monitoring

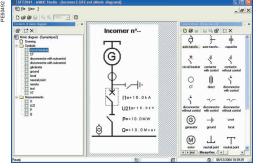
Adaptation of predefined functions using the SFT2841 software

Personalized alarm and operating messages

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on the Sepam display
- in the SFT2841 "Alarms" and "Alarm History" screens.


Local-control mimic diagram

The mimic-diagram editor in the SFT2841 software can be used to create a single-line diagram corresponding exactly to the equipment controlled by Sepam. Two procedures are available:

- rework a diagram taken from the library of standard diagrams in the SFT2841 software
- creation of an original diagram: graphic creation of the single-line diagram, positioning of symbols for the animated devices, insertion of measurements, text, etc.

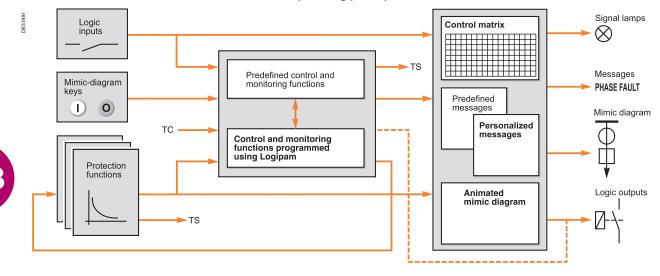
- library of predefined symbols: circuit breakers, earthing switch, etc.
- creation of personalized symbols.

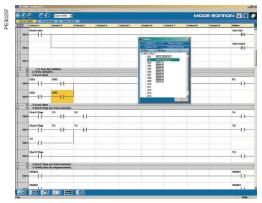


SFT2841: mimic-diagram editor.

Control matrix

The control matrix is a simple way to assign data from:


- protection functions
- control and monitoring functions
- logic inputs
- logic equations or Logipam program to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.



SFT2841: control matrix.

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by Logipam.

Operating principle

SFT2885: Logipam programming software.

Logipam programming software

The Logipam SFT2885 programming software can be used to:

- adapt predefined control and monitoring functions
- program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application.

It is made up of:

- a ladder-language program editor used to address all Sepam data and to program complex control functions
- a simulator for complete program debugging
- a code generator to run the program on Sepam.

The ladder-language program and the data used can be documented and a complete file can be printed.

Offering more possibilities than the logic-equation editor, Logipam can be used to create the following functions :

- specific automatic transfer functions
- motor starting sequences.

It is not possible to combine the functions programmed by Logipam with functions adapted by the logic-equation editor in a given Sepam.

The Logipam program uses the input data from:

- protection functions
- logic inputs
- remote control orders
- local control orders transmitted by the mimic-based UMI.

The result of Logipam processing may then be:

- assigned to a logic output, directly or via the control matrix
- assigned to a LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- used by the predefined control and monitoring functions
- used to inhibit or reset a protection function.

Characteristics Sepam series 80

Base unit Presentation

Base units are defined according to the following characteristics:

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector
- type of voltage sensor connector.

Sepam series 80 base unit with integrated advanced UMI.

Sepam series 80 base unit with mimic-based UMI.

Customized Chinese advanced UMI.

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam series 80 base units:

- mimic-based UMI
- advanced UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

A Sepam series 80 with a remote advanced UMI is made up of:

- a bare base unit without any UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

 \Box for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 162.

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand:

- display of all measurement and diagnosis data in numerical format with units and/or in bar graphs
- display of operating and alarm messages, with alarm acknowledgment and Sepam resetting
- display of the list of activated protection functions and the main settings of major protection functions
- adaptation of activated protection function set points or time delays in response to new operating constraints
- display of Sepam and remote module versions
- output testing and logic input status display
- display of Logipam data: status of variables, timers
- entry of 2 passwords to protect parameter and protection settings.

Local control of devices using the mimic-based UMI

The mimic-based UMI provides the same functions as the advanced UMI as well as local control of devices:

- selection of the Sepam control mode
- view device status on the animated mimic diagram
- local opening and closing of all the devices controlled by Sepam.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-guided access to data
- graphical LCD screen to display any character or symbol
- excellent display quality under all lighting conditions: automatic contrast setting and backlit screen (user activated).

Working language

All the texts and messages displayed on the advanced UMI or on the mimic-based UMI are available in 2 languages:

- English, the default working language
- and a second language, which may be
- □ French
- □ Spanish
- □ another "local" language.

Please contact us regarding local language customization.

Connection of Sepam to the parameter setting tool

The SFT2841 parameter setting tool is required for Sepam protection and parameter setting.

A PC containing the SFT2841 software is connected to the RS 232 communication port on the front of the unit.

Selection guide

With integrated advanced UMI Base unit With remote With mimic-based advanced UMI

Functions			
Local indication			
Metering and diagnosis data	•		•
Alarms and operating messages	•	•	•
List of activated protection functions		_ _	
Main protection settings	•	•	•
Version of Sepam and remote modules	•	•	
Status of logic inputs	•	•	•
Logipam data	•	•	•
Switchgear status on the animated mimic diagram			
Phasor diagram of currents or voltages			•
Local control			
Alarm acknowledgement	•	•	•
Sepam reset		•	•
Output testing		•	•
Selection of Sepam control mode			•
Device open/close order			•
Characteristics			
Screen			
Size	128 x 64 pixels	128 x 64 pixels	128 x 240 pixels
Automatic contrast setting		•	•
Backlit screen		•	•
Keypad			
Number of keys	9	9	14
Control-mode switch			Remote / Local / Test
LEDs			
Sepam operating status	 base unit: 2 LEDs visible on back remote advanced UMI: 2 LEDs visible on front 	2 LEDs, visible from front and back	2 LEDs, visible from front and back
Indication LEDs	9 LEDs on remote advanced UMI	9 LEDs on front	9 LEDs on front
Mounting			
	 bare base unit, mounted at the back of the compartment using the AMT880 mounting plate DSM303 remote advanced UMI module, flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord 	Flush mounted on front of cubicle	Flush mounted on front of cubicle

Sepam series 80 memory cartridge and backup battery.

Hardware characteristics

Removable memory cartridge

The cartridge contains all the Sepam characteristics:

- all Sepam protection and parameter settings
- all the metering and protection functions required for the application
- predefined control functions

Base unit

Presentation

- functions customized by control matrix or logic equations
- functions programmed by Logipam (optional)
- personalized local-control mimic diagram
- accumulated energies and switchgear diagnosis values
- working languages, customized and otherwise.

It may be made tamper-proof by lead sealing.

It is removable and easy to access on the front panel of Sepam to reduce maintenance time.

If a base unit fails, simply:

- switch off Sepam and unplug connectors
- retrieve original cartridge
- replace the faulty base unit by a spare base unit (without cartridge)
- load the original cartridge into the new base unit
- plug in the connectors and switch Sepam on again:

Sepam is operational, with all its standard and customized functions, without requiring any reloading of protection and parameter settings.

Backup battery

Standard lithium battery, 1/2 AA format, 3.6 Volts.

It allows the following data to be stored in the event of an auxiliary power outage:

- time-tagged event tables
- disturbance recording data
- peak demands, tripping context, etc
- date and time.

The battery presence and charge are monitored by Sepam.

The main data (e.g. protection and parameter settings) are saved in the event of an auxiliary power outage, regardless of the state of the battery.

Auxiliary power supply

DC power supply voltage from 24 to 250 V DC.

Five relay outputs

The 5 relay outputs O1 to O5 on the base unit must be connected to connector (A). Each output can be assigned to a predetermined function using the SFT2841 software.

O1 to O4 are 4 control outputs with one NO contact, used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition
- O3: switchgear closing
- O4: available.

 ${\sf O5}$ is an indication output used by default for the watchdog function and has two contacts, one NC and one NO.

Base unit Presentation

Main connector and voltage and residual current input connector

A choice of 2 types of removable, screw-lockable 20-pin connectors:

- CCA620 screw-type connectors
- or CCA622 ring lug connectors.

The presence of the connector is monitored.

Connector for additional voltage inputs (Sepam B83)

CCT640 connector, removable and screw-lockable.

The presence of the CCT640 connector is monitored.

Phase current input connectors

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

- CCA630 or CCA634 connector for 1 A or 5 A current transformers
- or CCA671 connector for LPCT sensors.

The presence of these connectors is monitored.

Mounting accessories

Spring clips

8 spring clips are supplied with the base unit to flush-mount Sepam in mounting plates 1.5 to 6 mm thick.

Simple, tool-free installation.

AMT880 mounting plate

It is used to mount a Sepam without UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT820 blanking plate

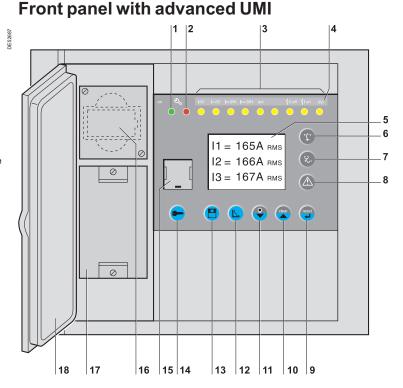
It fills in the space left when a standard model Sepam 2000 is replaced by a Sepam series 80.

Spare base units

The following spares are available to replace faulty base units:

- base units with or without UMI, without cartridge or connectors
- all types of standard cartridges, with or without the Logipam option.

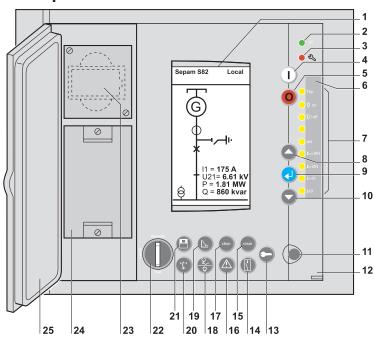
AMT852 lead sealing accessory

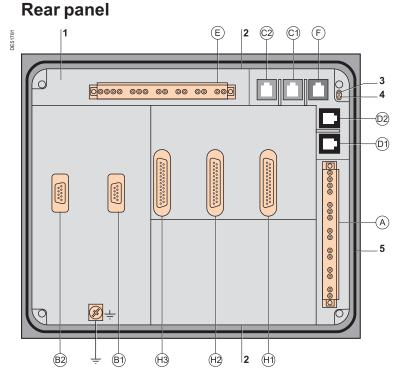

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 80 units with integrated advanced UMIs. The accessory includes:

- a lead-sealable cover plate
- the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 80 units Contact us to determine the serial number of the device on wich you can fit the lead sealing accessory.

1 Green LED: Sepam on.


- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- 10 Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- **12** Display and adaptation of activated protection settings.
- 13 Display of Sepam and Logipam data.
- 14 Entry of 2 passwords.
- 15 RS 232 PC connection port.
- 16 Backup battery.
- 17 Memory cartridge.
- **18** Door.


1 Graphical LCD screen.

- 2 Green LED: Sepam on.
- 3 Red LED: Sepam unavailable.
- 4 Local close order.
- 5 Local open order.
- 6 Label identifying the indication LEDs.
- 7 9 yellow indication LEDs.
- 8 Move cursor up.
- 9 Confirm data entry.
- 10 Move cursor down.
- 11 RS 232 PC connection port.
- 12 Transparent door.
- 13 Entry of 2 passwords.
- 14 Mimic-based UMI display.
- 15 Sepam reset.
- 16 Display of alarm messages.
- 17 Acknowledgement and clearing of alarms.
- 18 Display of switchgear and network diagnosis data (or LED test).
- **19** Display and adaptation of activated protection settings
- 20 Display of measurements.
- 21 Display of Sepam and Logipam data.
- 22 Three-position key switch to select Sepam control mode.
- 23 Backup battery.
- 24 Memory cartridge.
- **25** Door.

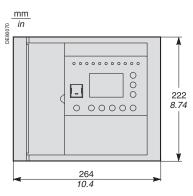
Front panel with mimic-based UMI

- 1 Base unit.
- 2 8 fixing points for 4 spring clips.
- 3 Red LED: Sepam unavailable.
- 4 Green LED: Sepam on.
- 5 Gasket.
- (A) 20-pin connector for:
 - 24 V DC to 250 V DC auxiliary supply
 - 5 relay outputs.
- (B1) Connector for 3 phase current I1, I2, I3 inputs.
- (B2) Sepam T87, M87, M88, G87, G88: connector for 3 phase current I'1, I'2, I'3 inputs
 - Sepam B83: connector for
 - □ 3 phase voltage V'1, V'2, V'3 inputs
 - □ 1 residual voltage V'0 input.
 - Sepam C86: connector for capacitor unbalance current inputs.
- (C1) Modbus communication port 1.
- ©2 Modbus communication port 2.
- (D1) Remote module connection port 1.
- (D2) Remote module connection port 2.
- (E) 20-pin connector for:
 - phase voltage V1, V2, V3 inputs
 - 1 residual voltage V0 input.
 - 2 residual current I0, I'0 inputs.
- F Spare port.
- (H1) Connector for 1st MES120 input/output module.
- (H2) Connector for 2nd MES120 input/output module.
- (H3) Connector for 3rd MES120 input/output module.

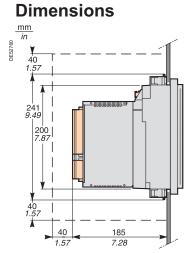
Base unit

Technical characteristics

Weight					
		Base unit with	advanced UMI	Base unit with	mimic-based UMI
	inimum weight (base unit without MES120)			3.0 kg (6.61 lb)	
Maximum weight (base unit with	3 MES120)	4.0 kg (8.82 lb)		4.6 kg (10.1 lb)	
Sensor inputs					
Phase current inputs		1 A or 5 A CT			
Input impedance		< 0.02 Ω			
Consumption		< 0.02 VA (1 A CT) < 0.5 VA (5 A CT)			
Continuous thermal withstand		4 In			
1 second overload		100 In			
Voltage inputs		Phase		Residual	
Input impedance		> 100 kΩ		> 100 kΩ	
Consommation		< 0.015 VA (100 V	VT)	< 0.015 VA (100 V	VVT)
Continuous thermal withstand		240 V		240 V	
1-second overload		480 V		480 V	
Isolation of inputs in relation to other isolated groups		Enhanced		Enhanced	
Relay outputs					
Control relay outputs O1	to O4 and 0 x 0.1 (1)				
Voltage	DC	24/48 V DC	127 V DC	220 V DC	
-	AC (47.5 to 63 Hz)				100 to 240 V AC
Continuous current		8 A	8 A	8 A	8 A
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A	
	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A	
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A	
	Resistive load				8 A
	Load p.f. > 0.3				5 A
Making capacity		< 15 A for 200 ms			
Isolation of outputs in relation to other isolated groups		Enhanced			
Annunciation relay output	ut 05				
Voltage	DC	24/48 V DC	127 V DC	220 V DC	
	AC (47.5 to 63 Hz)				100 to 240 V AC
Continuous current		2A	2 A	2 A	2 A
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5 A	0.15 A	
	Load p.f. > 0.3				1 A
Isolation of outputs in relation to other isolated groups		Enhanced			
Power supply					
Voltage		24 to 250 V DC	-20 % / -	+10 %	
Maximum consumption		< 16 W			
Inrush current		< 10 A 10 ms			
Acceptable ripple content		12 %			
Acceptable momentary outages		100 ms			
Battery					
Format		1/2 AA lithium 3.6	V		
Service life		10 years Sepam e	nergized		
		3 years minimum,	typically 6 years Sepan	n not energized	

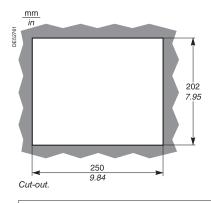

⁽¹⁾ Relay outputs comptying with clause 6.7 of standard C 97.90 (30 A, 200 ms, 2000 operations)

Base unit


Environmental characteristics

Electromagnetic compatibility	Standard	Level / Class	Value
Emission tests	Stariuaru	Level / Class	value
Disturbing field emission	IEC 60255-25		
2.0.ta.2g	EN 55022	A	
Conducted disturbance emission	IEC 60255-25		
	EN 55022	A	
Immunity tests – Radiated disturbances			
mmunity to radiated fields	IEC 60255-22-3		10 V/m; 80 MHz - 1 GHz
	IEC 61000-4-3	III	10 V/m; 80 MHz - 2 GHz
	ANSI C37.90.2		35 V/m; 25 MHz - 1 GHz
Electrostatic discharge	IEC 60255-22-2		8 kV air; 6 kV contact
Immunity to magnetic fields at naturals frequency	ANSI C37.90.3 IEC 61000-4-8	4	8 kV air; 4 kV contact
Immunity to magnetic fields at network frequency Immunity tests – Conducted disturbances	IEC 61000-4-8	4	30 A/m (continuous) - 300 A/m (1-3 s) ⁽⁴
mmunity to conducted RF disturbances	IEC 60255-22-6	III	10 V
Fast transient bursts	IEC 60255-22-4	A and B	4 kV; 2.5 kHz / 2 kV; 5 kHz
dot transiont bursts	IEC 61000-4-4	IV	4 kV; 2.5 kHz
	ANSI C37.90.1		4 kV; 2.5 kHz
1 MHz damped oscillating wave	IEC 60255-22-1		2.5 kV CM; 1 kV DM
	ANSI C37.90.1		2.5 kV CM; 2.5 kV DM
100 MHz damped oscillating wave	IEC 61000-4-12		2.5 kV CM; 1 kV DM
Surges	IEC 61000-4-5	III	2 kV CM; 1 kV DM
Voltage interruptions	IEC 60255-11		100 % during 100 ms
Mechanical robustness	Standard	Level / Class	Value
In operation			
Vibrations	IEC 60255-21-1	2	1 Gn; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	2 Hz - 13.2 Hz; a = ±1 mm
Shocks	IEC 60255-21-2	2	10 Gn / 11 ms
Earthquakes	IEC 60255-21-3	2	2 Gn (horizontal axes)
De-energized			1 Gn (vertical axes)
Vibrations	IEC 60255-21-1	2	2 Gn; 10 Hz - 150 Hz
Shocks	IEC 60255-21-1	2	27 Gn / 11 ms
Jolts	IEC 60255-21-2	2	20 Gn / 16 ms
Climatic withstand	Standard	Level / Class	Value
In operation	Stanuaru	Level / Class	value
Exposure to cold	IEC 60068-2-1	Ad	-25 °C
Exposure to dry heat	IEC 60068-2-2	Bd	+70 °C
Continuous exposure to damp heat	IEC 60068-2-78	Cab	10 days; 93 % RH ; 40 °C
Salt mist	IEC 60068-2-52	Kb/2	6 days
Influence of corrosion/Gas test 2	IEC 60068-2-60		21 days; 75 % RH; 25 °C;
			0.5 ppm H ₂ S; 1 ppm SO ₂
Influence of corrosion/Gas test 4	IEC 60068-2-60		21 days; 75 % HR; 25 °C;
			0.01 ppm H ₂ S; 0.2 ppm SO ₂ ;
			0.2 ppm NO ₂ ; 0.01 ppm Cl ₂
In storage (3)			
Temperature variation with specified variation rate	IEC 60068-2-14	Nb	-25 °C at +70 °C; 5 °C/min
Exposure to cold	IEC 60068-2-1	Ab	-25 °C
Exposure to dry heat	IEC 60068-2-2	Bb	+70 °C
Continuous exposure to damp heat	IEC 60068-2-78	Cab	56 days; 93 % RH; 40 °C
Cafata	IEC 60068-2-30	Db	6 days; 95 % RH; 55 °C
Safety	Standard	Level / Class	Value
Enclosure safety tests			
Front panel tightness	IEC 60529	IP52	Other panels IP20
	NEMA	Type 12	050.00 ;;;
Fire withstand	IEC 60695-2-11		650 °C with glow wire
Electrical safety tests 1.2/50 µs impulse wave	IEO COSES E		E 1.7 (4)
1.2/JU US IIIIPUISE WAVE	IEC 60255-5		5 kV ⁽¹⁾
2	IEC 60255-5		2 kV 1mn ⁽²⁾ 1 kV 1 mn (indication output)
P ower frequency dielectric withstand			r k v i mn undication olifnit)
P ower frequency dielectric withstand	ANSI C37.90		
			1.5 kV 1 mn (control output)
Certification	ANSI C37.90	Company disasting	
Power frequency dielectric withstand Certification CC		European directives: ■ 89/336/EEC Electro □ 92/31/EEC Amendme	1.5 kV 1 mn (control output) magnetic Compatibility (EMC) Directive
Certification	ANSI C37.90 EN 50263 harmonized	■ 89/336/EEC Electro	1.5 kV 1 mn (control output) magnetic Compatibility (EMC) Directive ent
Certification	ANSI C37.90 EN 50263 harmonized	■ 89/336/EEC Electro □ 92/31/EEC Amendme □ 93/68/EEC Amendme ■ 73/23/EEC Low Volta	1.5 kV 1 min (control output) magnetic Compatibility (EMC) Directive ent ent ege Directive
Certification CE	ANSI C37.90 EN 50263 harmonized standard	■ 89/336/EEC Electro □ 92/31/EEC Amendme □ 93/68/EEC Amendme ■ 73/23/EEC Low Volta □ 93/68/EEC Amendme	1.5 kV 1 mn (control output) magnetic Compatibility (EMC) Directive ent ge Directive ent
Certification	ANSI C37.90 EN 50263 harmonized	■ 89/336/EEC Electro □ 92/31/EEC Amendme □ 93/68/EEC Amendme ■ 73/23/EEC Low Volta □ 93/68/EEC Amendme	1.5 kV 1 min (control output) magnetic Compatibility (EMC) Directive ent ent ege Directive

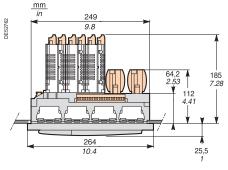
- (1) Except for communication: 3 kV in common mode and 1 kV in differential mode.
 (2) Except for communication: 1 kVrms.
 (3) Sepam must be stored in its original packing.
 (4) Iso > 0.1 Ino for the 50n/51n and 67n protection functions, with I0 calculated as the sum of the phase currents.



Front view of Sepam.

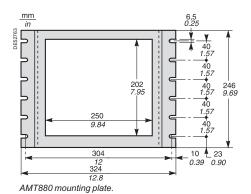
Side view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: $1.5\,\mathrm{mm}$ ($0.05\,\mathrm{ln}$) to $6\,\mathrm{mm}$ ($0.23\,\mathrm{ln}$) thick.

Clearance for Sepam assembly and wiring.

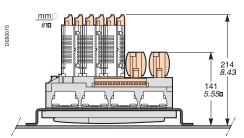


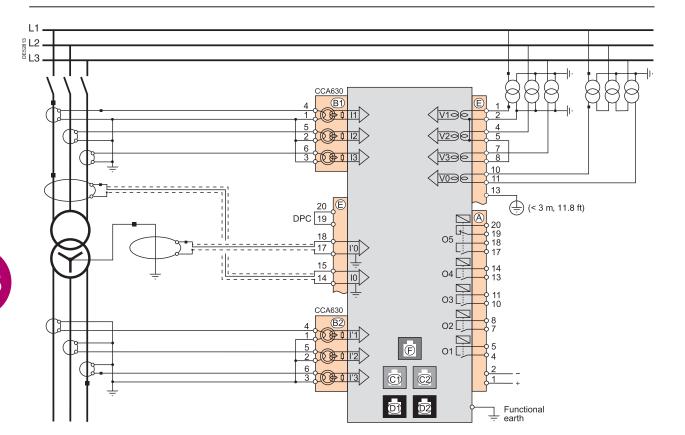
A CAUTION

HAZARD OF CUTS


Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.




Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Assembly with AMT880 mounting plate

Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Mounting plate: 3 mm (0.11 ln) thick.

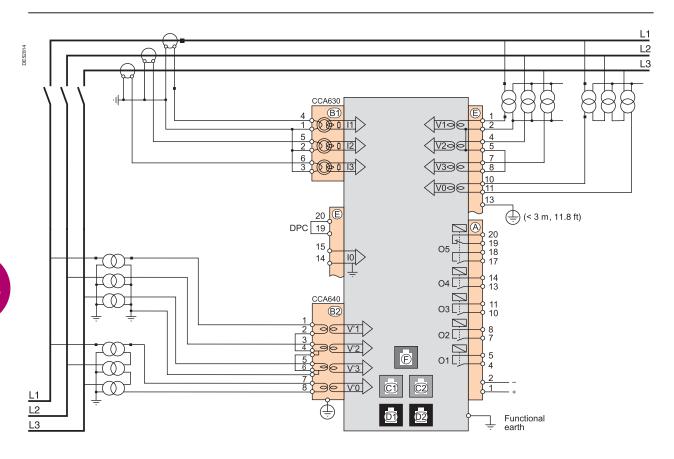
Connection characteristics

Connector	Туре	Reference	Wiring
(A), (E)	Screw type	CCA620	 wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≥ AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥ AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire (AWG 16) DZ5CE025D for 1 x 2.5 mm² wire (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in) stripped length: 8 mm (0.31 in)
	6.35 mm ring lugs	CCA622	■ 6.35 mm ring or spade lugs (1/4") ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 1.2 (13.27 lb-in)
<u>C1</u> , <u>C2</u>	Green RJ45 plug		CCA612
(D1), (D2)	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13.1 ft) CCA785 for MCS025 module: L = 2 m (6.6 ft)
Functional earth	Ring lug		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm² ■ maximum length: 300 mm (11.8 in)
B1), B2	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 ■ wire cross-section 1.5 to 6 mm² (AWG 16-10) ■ tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor

▲ CAUTION

LOSS OF PROTECTION OR RISK OF NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.


Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Connection characteristics

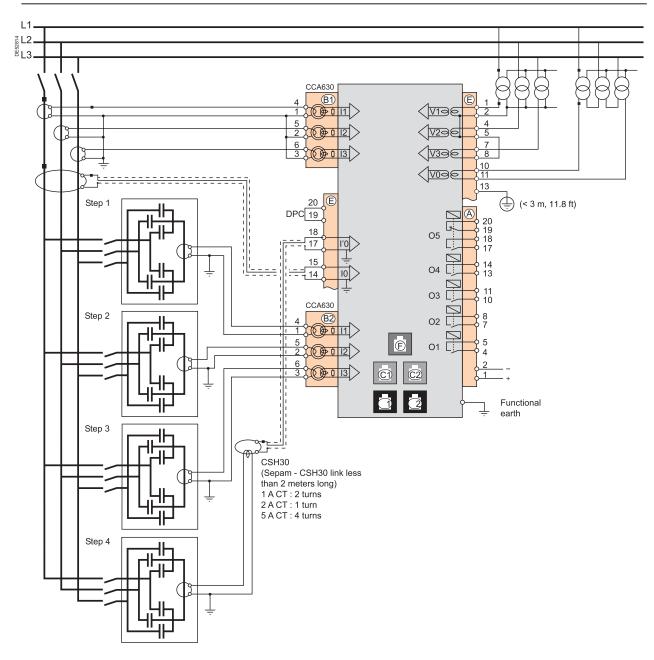
Connector	Type	Reference	Wiring
B 1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
B2	Screw type	CCT640	VT wiring: same as wiring for the CCA620 Earthing connection: by 4 mm ring lug

For connectors (A), (E), (C1), (C2), (D1), (D2), (D2), (D2), (D2), (D2), (D2)

A CAUTION

LOSS OF PROTECTION OR RISK OF NUISANCE TRIPPING

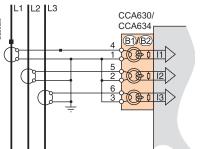
If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.


Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

A DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

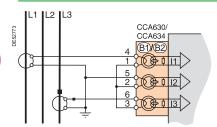
- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.


Failure to follow these instructions will result in death or serious injury.

Connector	Туре	Reference	Wiring
(B1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm² (AWG 16-10)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor
B2)	4 mm ring lugs	CCA630, for connection of 1 A, 2A or 5 A CTs	1.5 to 6 mm² (AWG 16-10)
Functional earth	Ring lugs		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm² ■ maximum length: 300 mm

For connectors (A), (E), (C1), (C2), (D1), (D2), (D2), (D2) : see Page 127.

Variant 1: phase current measurement by 3 x 1 A or 5 A CTs (standard connection)


Connection of 3 x 1 A or 5 A sensors to the CCA630 connector.

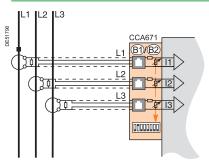
The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Sensor type	5 A CT or 1 A CT
Number of CTs	11, 12, 13
Rated current (In)	1 A to 6250 A

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Connection of 2 x 1 A or 5 A sensors to the CCA630 connector.


Measurement of phase 1 and 3 currents is sufficient for all protection functions based on phase current.

This arrangement does not allow the calculation of residual current, nor use of ANSI 87T and 87M differential protection functions on the Sepam T87, M87, M88, G87 and G88.

Parameters

Sensor type	5 A CT or 1 A CT
Number of CTs	11, 13
Rated current (In)	1 A to 6250 A

Variant 3: phase current measurement by 3 LPCT type sensors

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA671 connector. It is necessary to connect 3 sensors; if only one or two sensors are connected, Sepam goes into fail-safe position.

Measurement of the 3 phase currents allows the calculation of residual current.

The In parameter, primary rated current measured by an LPCT, is to be chosen from the following values, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Parameter to be set using the SFT2841 software tool, to be completed by hardware setting of the microswitches on the CCA671 connector.

It is not possible to use LPCT sensors for the following measurements:

- phase-current measurements for Sepam T87, M88 and G88 with ANSI 87T transformer differential protection (connectors (B1) and (B2))
- phase-current measurements for Sepam B83 (connector (B1))
- unbalance-current measurements for Sepam C86 (connector (B2)).

Parameters

Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

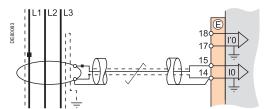
Note: Parameter In must be set twice:

- Software parameter setting using the advanced UMI or the SFT2841 software tool
- Hardware parameter setting using microswitches on the CCA671 connector

Base unit

Residual current inputs

Variant 1: residual current calculation by sum of 3 phase currents

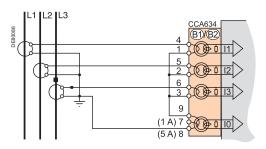

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by $3 \times 1 \, \text{A}$ or $5 \, \text{A}$ CTs or by $3 \, \text{LPCT}$ type sensors. See current input connection diagrams.

Parameters

Residual current	rated residual current	Measuring range
Sum of 3 Is	In0 = In, CT primary current	0.01 to 40 In0 (minimum 0.1 A)

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT (standard connection)

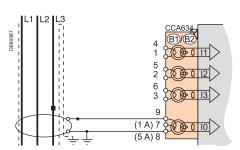

Description

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

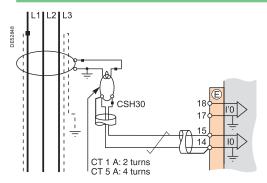
Parameters

Residual current	rated residual current	Measuring range
2 A rating CSH	In0 = 2 A	0.1 to 40 A
20 A rating CSH	In0 = 20 A	0.2 to 400 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634


Description

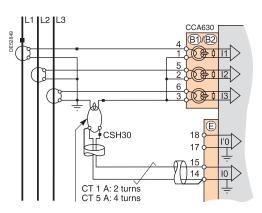
Residual current measurment by 1 A or 5 A CTs


- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

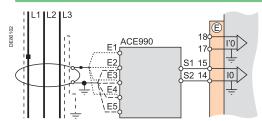
Parameters

Residual current	rated residual current	Measuring range
1ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT


Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:


- CSH30 interposing ring CT connected to 1 A CT: make 2 turns through CSH primary
- \blacksquare CSH30 interposing ring CT connected to 5 A CT: make 4 turns through CSH primary.

Parameters

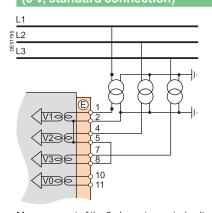
Residual current	rated residual current	Measuring range
1ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between a MV core balance CT with a ratio of 1/n (50 \leq n \leq 1500) and the Sepam residual current input.

This arrangement allows the continued use of existing core balance CTs on the installation.

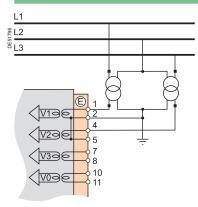

Parameters

Residual current	rated residual current	Measuring range
ACE990 - range 1 (0.00578 ≤ k ≤ 0.04)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)
ACE990 - range 2 (0.00578 ≤ k ≤ 0.26316)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)

(1) n = number of core balance CT turns

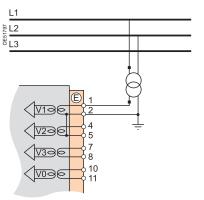
k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Variant 1: measurement of 3 phase-to-neutral voltages (3 V, standard connection)

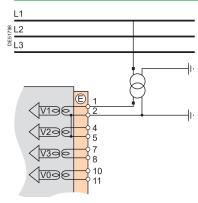

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, $V0\Sigma$.

Phase voltage input connection variants

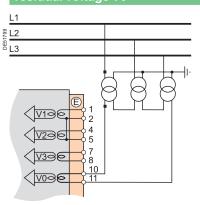
Phase voltage inputs


Residual voltage input

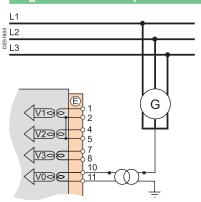
Main channels


This variant does not allow the calculation of residual voltage.

Variant 3: measurement of 1 phase-to-phase voltage (1 U)

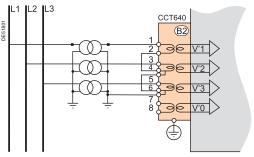

This variant does not allow the calculation of residual voltage.

Variant 4: measurement of 1 phase-to-neutral voltage (1 V)

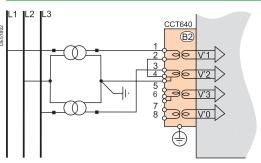

This variant does not allow the calculation of residual voltage.

Variant 5: measurement of residual voltage V0

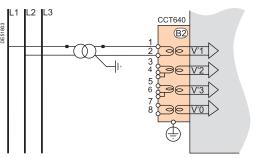
Residual voltage input connection variants


Variant 6: measurement of residual voltage Vnt in generator neutral point

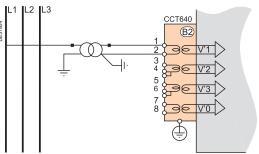
Additional phase voltage input connection variants


Variant 1: measurement of 3 phase-to-neutral voltages

(3 V', standard connection)

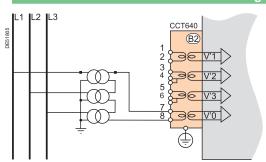

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, $V'0\Sigma$.

Variant 2: measurement of 2 phase-to-phase voltages (2 U')


This variant does not allow the calculation of residual voltage.

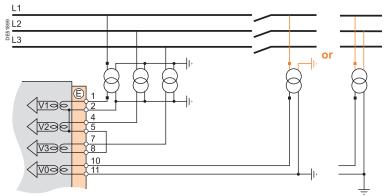
Variant 3: measurement of 1 phase-to-phase voltage (1 U')

This variant does not allow the calculation of residual voltage.

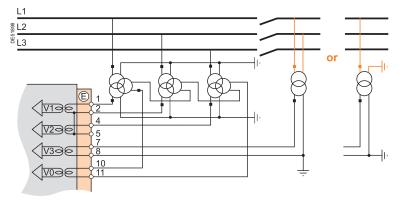

Variant 4: measurement of 1 phase-to-neutral voltage (1 V')

This variant does not allow the calculation of residual voltage.

Additional residual voltage input connection


Variant 5: measurement of residual voltage V'0

Phase voltage inputs


Residual voltage input Additional channel for Sepam B80

Connection to measure one additional voltage

This connection should be used to measure:

- three phase-to-neutral voltages V1, V2, V3 on busbars no. 1
- one additional phase-to-neutral voltage V'1 (or one additional phase-to-phase voltage U'21) on busbars no. 2.

This connection should be used to measure:

- two phase-to-phase voltages U21, U32 and one residual voltage V0 on busbars no. 1
- one additional phase-to-phase voltage U'21 (or one additional phase-to-neutral voltage V'1) on busbars no. 2.

Connection diagrams

Phase voltage inputs

Residual voltage input Available functions

The availability of certain protection and metering functions depend on the phase and residual voltages measured by Sepam.

The table below gives the voltage input connection variants for which for each protection and metering function dependent on measured voltages is available.

The directional overcurrent protection function (ANSI 67N/67NC) uses residual voltage V0 as a polarization value.

It is therefore operational in the following cases:

- measurement of the 3 phase-to-neutral voltages and calculation of $V0\Sigma$ (3 V + $V0\Sigma$, variant 1)
- measurement of residual voltage V0 (variant 5).

The protection and metering functions which do not appear in the table below are available regardless of the voltages measured.

Phase voltages measured		3 V + V0∑		2 U			1 U			1 V			
(connection variant)		(var. 1) (var. 2))	(var. 3)			(var. 4)					
Residual voltage measured		_	V0	Vnt	_	V0	Vnt	_	V0	Vnt	_	V0	Vnt
(connection variant)			(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)
Protection functions dependent on voltage	es measured		, ,	, ,	•	, ,	, ,	•	, ,	, ,		, ,	, ,
Directional phase overcurrent	67				-								
Directional earth fault	67N/67NC												
Directional active overpower	32P	•				•							
Directional reactive active overpower	32Q	•			-								
Directional active underpower	37P				-	•							
Field loss (underimpedance)	40				-	•							
Pole slip, phase shift	78PS				•	•	-						
Voltage-restrained overcurrent	50V/51V				•		-						
Underimpedance	21B	•		-		•	•						
Inadvertent energization	50/27					-							
100 % stator earth fault	64G2/27TN												
Overfluxing (V/Hz)	24	•				-				•		-	
Positive sequence undervoltage	27D												
Remanent undervoltage	27R									-			•
Undervoltage (L-L or L-N)	27									•			•
Overvoltage (L-L or L-N)	59									•			•
Neutral voltage displacement	59N												•
Negative sequence overvoltage	47												
Overfrequency	81H									•			•
Underfrequency	81L									•			•
Rate of change of frequency	81R						•						
Measurements dependent on voltages me	asured			1			_		1	<u> </u>			
Phase-to-phase voltage U21, U32, U13 or U'2	1, U'32, U'13			-				U21,	U21	U21			
	, ,							U'21					
Phase-to-neutral voltage V1, V2, V3 or V'1, V'2	2, V'3			•		•					V1, V'1	V1, V'1	V1
Residual voltage V0 or V'0													
Neutral point voltage Vnt										•			•
Third harmonic neutral point or residual voltage	e												•
Positive sequence voltage Vd or V'd /	-												
negative sequence voltage Vi or V'i													
Frequency													
Active / reactive / apparent power: P, Q, S		•		-	-	•		-	-				
Peak demand power PM, QM		•			-	•	•	•	-				
Active / reactive / apparent power per phase : P1/P2/P3, Q1/Q2/Q3, S1/S2/S3		(1)	(1)	(1)		(1)					P1/ Q1/S1	P1/ Q1/S1	P1/ Q1/S1
Power factor						•	•	•					
Calculated active and reactive energy (±Wh, ±	VARh)	•		•		•	•	•	-	•			
Total harmonic distortion, voltage Uthd		•				•	•	•	-	•			
Phase displacement φ0, φ'0		•				•			-			-	
Phase displacement φ1, φ2, φ3		•		-	•	-	-			1			
Apparent positive sequence impedance Zd		•	•	-	•	-	-		1	1			
Apparent phase-to-phase impedances Z21, Z3	32, Z13	•		-	•	-				1			
■ Function available on main voltage channels									-			-	

- Function available on main voltage channels.
- □ Function available on Sepam B83 additional voltage channels.

 □ Function available on Sepam B80 additional voltage channel, according to the type of the additional voltage measured.
- (1) If all three phase currents are measured.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to:

- complete library: technical documents, catalogs, FAQs, brochures...
- selection guides from the e-catalog.
- product discovery sites and their Flash animations.
 You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The electrical installation guide

According to IEC 60364

This guide, part of the Schneider Electric offer, is the essential tool to "guide" you any time in your business:

- design office, consultant
- contractor, panelbuilder
- teacher, trainer.

Comprehensive and concrete information on:

- all the new technical solutions
- all the components
- of an installation from a global point of view
- all the IEC standards modifications
- all the fundamental electrotechnical knowledge
- all the design stages, from medium to low voltage.

Sepam series 20 Sepam series 40 Sepam series 80

Additional modules and accessories

kange description	•
Sepam series 20 and Sepam series 40	47
Sepam series 80	85
Coffe com	444
Software	141
Sepam software	141
SFT2841 setting and operating software	142
Function SFT2841 connection to Sepam	142 144
Adaptation of the predefined functions	145
SFT2826 disturbance recording data display software	146
SFT850 configuration software for IEC 61850 protocol	147
· ·	148
SFT2885 programming software - Logipam	140
Logic input / output modules	150
MES114 modules	150
Logic input / output assignment of Sepam series 20	152
Logic input / output assignment of Sepam series 40	153
MES120, MES120G, MES120H 14 input / 6 output module	154
Presentation	154
Installation	155
Logic input / output assignment	156
Remote modules	158
Selection guide and connection	158
MET148-2 Temperature sensor module	159
MSA141 Analog output module	161
DSM303 Remote advanced UMI module	162
MCS025 Synchro-check module	164
Other modules	168
Sepam 100 LD	168
Presentation	168
High impedance differential protection	169
Sensors and surge limiters	170
Description and connection	171
Characteristics and dimensions	173
Sepam 100 MI	174
Presentation	174
Block and connection diagrams	175
Characteristics and dimensions	170

Additional modules and accessories

Communication accessories	179
Selection guide	179
Communication interfaces	180
Communication interface connection	180
ACE949-2 2-wire RS 485 network interface	181
ACE959 4-wire RS 485 network interface	182
ACE937 Fiber optic interface	183
ACE969TP-2 and ACE969FO-2 network interfaces Description Connection	184 186 187
Converters	189
ACE909-2 RS 232 / RS 485 converter	189
ACE919CA and ACE919CC RS 485 / RS 485 converters	191
Sepam IEC 61850 level 1 server ECI850MG	193
Ethernet EGX100 gateway	197
Ethernet EGX400 server	198
WPG software tool HTML page generator	201
Sensors	202
Selection guide	202
Voltage transformers	203
1 A / 5 A current transformers	204
LPCT type current sensors Test accessories	207 208
CSH120 and CSH200 Core balance CTs	210
CSH30 Interposing ring CT	212
ACE990 Core balance CT interface	213
Order form Index	217 227

Sepam software

Presentation

Three types of Sepam PC software are available:

- SFT2841 setting and operating software
- SFT2826 disturbance recording data display software
- SFT2885 programming software for the Sepam series 80 (Logipam)
- SFT850 advanced-configuration software for IEC 61850 protocol.

SFT2841 and SFT2826 software

 ${\sf SFT2841}$ and ${\sf SFT2826}$ software is provided on the same CD-ROM as the Sepam documentation in PDF format.

PC connection cord

The CCA783 PC connection cord, to be ordered separately, is designed to connect a PC to the RS 232 port on the front panel of a Sepam unit in order to use the SFT2841 software in point-to-point connected mode.

The USB/RS232 TSXCUSB232 converter may be used with the CCA783 connection cord for connection to a USB port.

SFT2885 software

SFT2885 is available on a separate CD-ROM.

SFT850 software

SFT850 is available on a separate CD-ROM.

Minimum configuration required

SFT2841 and SFT2826 software		
Operating systems	Microsoft 2000/XP	
RAM	128 MB (32 MB for Windows 98)	
Space on disk	120 MB	

SFT2885	
Operating systems	Microsoft 2000/XP
RAM	64 MB
Space on disk	20 MB

SFT850	
Operating systems	Microsoft 2000/XP
RAM	64 MB
Space on disk	40 MB

SFT2841 setting and operating software

Function

The SFT2841 software is the setting and operating tool for Sepam series 20, Sepam series 40 and Sepam series 80.

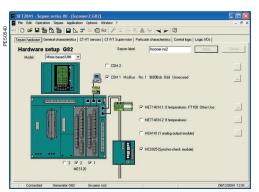
It may be used:

- prior to commissioning and without connection to Sepam, to prepare Sepam protection and parameter settings
- during commissioning, on a PC connected point-to-point to the front panel Sepam:
- $\hfill\Box$ to load, unload and modify Sepam protection and parameter settings
- □ to obtain all measurements and useful information during commissioning
- during operation, on a PC connected to a set of Sepam relays via an E-LAN multipoint communication network:
- □ to manage the protection system
- ☐ to monitor the status of the electrical network
- □ to run diagnostics on any incidents affecting the electrical network.

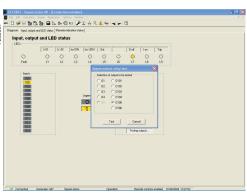
Preparation of Sepam parameter and protection settings in unconnected mode

- configuration of Sepam and optional modules, and entry of general settings
- enabling/disabling of functions and entry of protection settings
- adaptation of predefined control and monitoring functions
- creation of personalized mimic diagrams for local display.

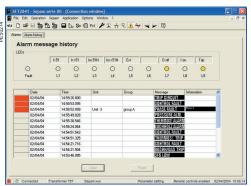
Sepam commissioning via a point-to-point connection to the front panel


- access to all functions available in unconnected mode, after entering the protection-setting or parameter-setting password
- transfer of Sepam parameter and protection setting file, prepared in unconnected mode (downloading function), protected by the parameter-setting password
- display of all measurements and useful information during commissioning
- display of logic input, logic output and LED status
- test of logic outputs
- display of Logipam variables
- setting of Logipam parameters (configuration bits, timers, etc.)
- modification of passwords.

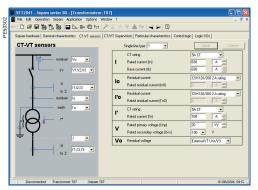
Management of protection functions and network diagnostics with an E-LAN multipoint network connection

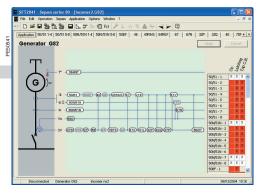

- reading of all Sepam protection and parameter settings, modifications following entry of the protection-setting or parameter-setting password
- display of all the Sepam measurement data
- display of Sepam, switchgear and network diagnosis data
- display of time-tagged alarm messages
- retrieval of disturbance recording data.

Efficient, easy-to-use software

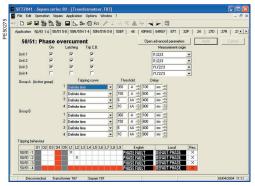

- menus and icons for fast, direct access to the data required
- guided navigation to go through all the data input screens in the natural order
- $\,\blacksquare\,$ all data on the same function together in the same screen
- \blacksquare trilingual software: English, French, Spanish
- $\hfill \blacksquare$ on-line help, with all the technical information needed to use
- and implement Sepam
- familiar file management in Microsoft Windows environment:
- □ all file management services included: copy / paste, save, etc.
- $\hfill \square$ printing of parameter and protection settings in standard layout.

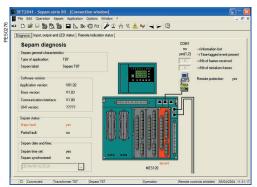
SFT2841: Sepam series 80 hardware configuration


SFT2841: output testing.


SFT2841: alarm history.

SFT2841 setting and operating software


Function


SFT2841: Sepam series 80 sensor parameter setting.

SFT2841: Sepam series 80 application, with protection function measurement origin.

SFT2841: protection settings.

SFT2841: Sepam diagnosis.

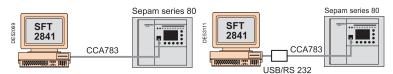
The table below gives the SFT2841 functions available for each of the 3 Sepam series: Sepam series 20, Sepam series 40 and Sepam series 80.

NC: function available in unconnected mode.

S: function available with SFT2841 connected via Sepam front panel.

E: function available with SFT2841 connected to Sepam via E-LAN communication network.

Functions	Sei	ries	20	Se	ries	40	Series 80		
Management									
On-line help				•			-		
Management of parameter and protection setting files: creation, saving, downloading and uploading	•		•	•	•	•	•	•	-
Downloading and uploading of parameter and protection setting files		•			•	(1)		•	
Exporting of parameter and protection settings in a text file	•			•	•				
Printing of parameter and protection settings	•	•	•	•	•	•	•	•	
Modification of passwords, one for parameter setting and one for protection setting		•		l	•	•			
Sepam parameter setting									
Display of parameter settings				•		•	-	-	
Hardware configuration and parameter entry protected by parameter setting password	•	-	•	•	-	•	•	•	-
Graphical parameter setting assistance							•	•	
Standard configuration for IEC 61850 network				•	•	•	•		
Protection setting									
Display of protection settings	•			•	-	•	-	-	
Entry of protection settings, protected by protection setting password	•	•	•	•	-	•	•	•	
Definition of customized tripping curve							•	-	
Adaptation of the predefined function									
Display and modification of the control matrix	•	•		•	•	•	•	•	
Logic equation editing						•	•		
Number of instructions				100			200		
Number of dedicated remote indications				10			20		
Display of logic equations					•	-		-	Ш
Load the Logipam program							•	•	
Setting of Logipam parameters								•	
Assignment of LEDs on front	•	-	-	•	-	•	-	-	
Editing of user messages						-		-	
Number of user messages				30			100		
Editing of personalized mimic diagram							-		
Assistance in commissioning and ope	erati	ng th	e ins	talla	,				
Display of all the Sepam measurement data						•			
Display of switchgear diagnosis assistance data		•			•			•	
Display of machine operating assistance data					-	-		-	
Display of time-tagged alarm messages					-			-	
Tripping context						•		-	
Retrieval of disturbance recording files		•			•			•	-
Display of Logipam variables		•			•	-		•	•
Display of logic input/output status					-			-	
Output testing						•		•	


(1) Except for logic equations and personalized messages.

SFT2841 setting and operating software

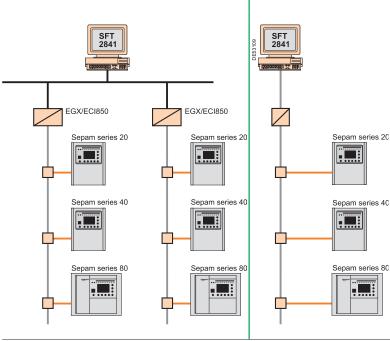
SFT2841 connection to Sepam

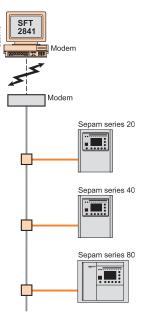
SFT2841 connection to the front panel of a Sepam

Connection of the PC RS232 serial port to the communication port on the front panel of Sepam series 20, Sepam series 40 or Sepam series 80 using the CCA783 cord or the USB/RS232 (TSXCUSB232) converter + CCA783.

SFT2841 connection to a set of Sepam relays

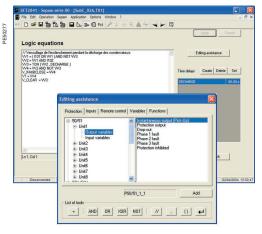
The SFT2841 can be connected to a set of Sepam relays, themselves connected to a E-LAN communication network in one of the three architectures presented below. These connections do not require any further software development work.


- connection a set of Sepam to a Modbus RS 485 network
- Ethernet RS 485 link via the EGX100 or EGX400 gateway or the ECI850 server
- connection of the PC via its Ethernet port.


RS 485 serial connection

- connection a set of Sepam to a Modbus RS 485 network
- connection of the PC via its RS 232 port, using the ACE909-2 interface.

Telephone-line connection connection a set of Sepam to a


- Modbus RS 485 network
- RS 485-RTC link via an RS 485 modem (Wertermo TD-34 for example)
- connection of the PC via its modem port.

SFT2841 setting and operating software

Adaptation of the predefined functions

SFT2841: logic equation editor.

Logic equation editor (Sepam series 40 and series 80)

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- □ conditional inhibition/validation of functions

■ adapt predefined control functions: particular circuit breaker or recloser control sequences etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- local control orders transmitted by the mimic-based UMI
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

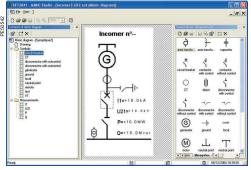
Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message from the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Alarms and operating messages (Sepam series 40 and series 80)

New alarm and operating messages may be created using the SFT2841 software. The new messages are added to the list of existing messages and may be assigned via the control matrix for display:


- on Sepam's advanced UMI
- in the SFT2841 "Alarms" and "Alarm History" screens.

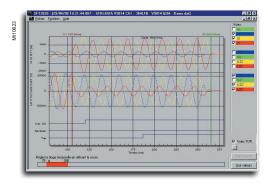
Local-control mimic diagram (Sepam series 80)

The local-control mimic diagram displayed on the UMI can be personalized by adapting one of the supplied, predefined mimic diagrams or by creating a diagram from scratch.

The mimic-diagram editor can be used to:

- create a fixed, bitmap background (128 x 240 pixels) using a standard drawing tool
- create animated symbols or use predefined animated symbols to represent the electrotechnical devices or other objects
- assign the logic inputs or internal status conditions that modify the animated symbols. For example, the logic inputs for the circuit-breaker position must be linked to the circuit-breaker symbol to enable the display of the open and closed conditions
- assign the logic outputs or internal status conditions that are activated when an opening or closing order are issued for the symbol
- display the current, voltage and power measurements on the mimic diagram.

SFT2841: mimic-diagram editor.


SFT2841: control matrix.

Control matrix

The control matrix is used for simple assignment of data from:

- protection functions
- control and monitoring functions
- logic inputs
- logic equations or the Logipam program
- to the following output data:
- logic outputs
- 9 LEDs on the front of Sepam
- messages for local display
- triggering of disturbance recording.

SFT2826 disturbance recording data display software

SFT2826: analysis of a disturbance data record.

Function

The SFT2826 software is used to display, analyze and print disturbance data recorded by Sepam.

It uses COMTRADE (IEEE standard: Common format for transient data exchange for power systems) files.

Transfer of disturbance recording data

Before they are analyzed by SFT2826, the disturbance recording data must be transferred from Sepam to the PC:

- by the SFT2841 software
- or by the Modbus communication link.

Analysis of disturbance recording data

- selection of analog signals and logic data for display
- zoom and measurement of time between events
- display of all numerical values recorded
- exporting of data in file format
- printing of curves and/or numerical values recorded.

Characteristics

The SFT2826 software comes with the SFT2841 software:

- 4 languages: English, French, Spanish, Italian
- on-line help with description of software functions.

SFT850 configuration software for IEC 61850 protocol

Function

The SFT850 software is used to easily create, modify and consult the SCL (Substation Configuration Language) configuration files for the IEC 61850 communication protocol:

- CID (Configured IED description) file for configuration of a device connected to an IEC 61850 network
- SCD (Substation Configuration Description) file for IEC 61850 configuration of substation equipment.

The SFT850 software supplements the standard IEC 61850 configuration created with the SFT2841 software in cases where the configuration must be precisely adapted to system requirements.

Adding or deleting equipment

The SFT850 software can be used to add or delete connected equipment in the IEC 61850 configuration. If a Sepam unit is added, the software uses the supplied ICD (IED capability description) file to start configuration.

Equipment connection

The SFT850 software describes the data for equipment connection to the network.

Editing the equipment configuration

The configuration of a given device described in a CID or SCD file can be modified:

- add, modify or delete datasets. A dataset is used to group data and optimise communication
- add, modify or delete RCBs (Report Control Block). A Report Control Block defines dataset transmission conditions
- add, modify or delete GCBs (Goose Control Block). A Goose Control Block defines how data is exchanged between Sepam units
- modify dead measurement bands. This parameter is used to optimise communication in that measurements are transmitted only if they have changed significantly.

Generating CID files

The SFT850 software can generate the CID file for each device on the basis of an SCD file.

SFT2885 programming software - Logipam

Function

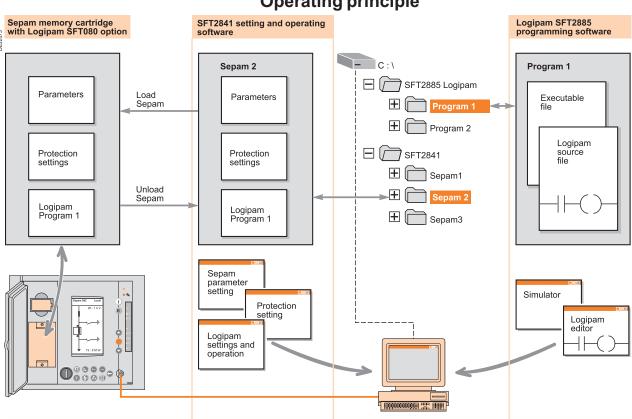
The SFT2885 programming software (called Logipam) is intended exclusively for the Sepam series 80 and can be used to:

- adapt predefined control and monitoring functions
- program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application.

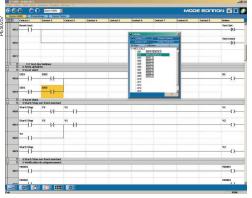
It is made up of:

- a ladder-language program editor used to address all Sepam data and to program complex control functions
- a simulator for complete program debugging
- a code generator to run the program on Sepam.

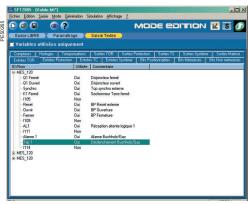
The ladder-language program and the data used can be documented and a complete file can be printed.

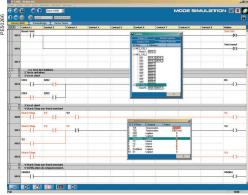

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by the Logipam SFT2885 software.

The complete Logipam software is made up of the executable program run by Sepam and the source program that can be modified by the Logipam SFT2885 programming software.


The SFT2841 setting and operating software, required for implementation of the Logipam program, offers the following functions:

- association of the complete Logipam program with the Sepam parameter and protection settings
- loading and unloading of Logipam program, parameters and settings in the Sepam cartridge
- running of the functions programmed with Logipam:
- $\hfill \square$ display of the status of Logipam internal bits
- □ setting of Logipam parameters: configuration bits, timers, etc.


Operating principle


SFT2885 programming software - Logipam

SFT2885: ladder-language program, structured in sections.

SFT2885: variable editor.

SFT2885: program debugging.

Characteristics

Program structure

A ladder-language program is made up of a series of rungs executed sequentially:

- maximum 1000 lines with 9 contacts and 1 coil maximum per line
- with a maximum total number of 5000 contacts and coils.

Comments may be made for each line.

Sections

The program can be broken down into sections and subsections to clarify the structure and facilitate reading. It is possible to set up three levels of sections. Comments may be added for each section.

Execution of each section can be subjected to conditions.

Variable editor

Each variable is defined by an invariable identifier and can be linked to a name or a comment.

The programmer can decide to work directly with the identifiers or with the linked names.

The list of the variables used and the cross references may be consulted during programming.

Graphic elements in the ladder language

The graphic elements are the instructions in the ladder language:

- NO and NC contacts
- rising and falling-edge detection contacts
- direct or negated coils
- set and reset coils
- coils and contacts linked to timers, counters and clocks.

Available resources

Sepam variables

All the data used by Sepam functions can be addressed by Logipam:

- all logic inputs and outputs
- all remote-control orders and remote indications
 (the remote-control orders and remote indication used in the Logipam program are no longer used by the predefined functions)
- all protection-function inputs and outputs
- all inputs and outputs for the predefined control and monitoring functions
- all inputs and outputs for symbols in the mimic-based UMI
- all system data.

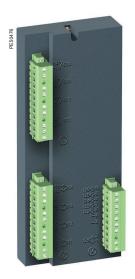
Logipam internal variables

- 64 configuration bits to parameter program processing, settable via the SFT2841 software and the display
- 128 bits used by the control matrix to control LEDs, messages and logic outputs
- 128 internal bits that are saved
- 512 internal bits that are not saved.

Logipam functions

- 60 timers that can be set for a rising edge (TON) or a falling edge (TOF)
- 24 incremental counters with adjustable thresholds
- 4 clocks for a given week.

Debugging tools


The Logipam software offers a complete set of tools for program debugging:

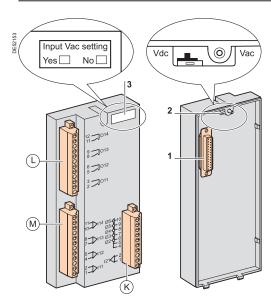
- step-by-step or continuous program execution to simulate the programmed functions
- color animation of the rungs and all program variables
- grouping in a table of all program variables requiring monitoring.

Documentation

The application file can be printed in part or in whole.

The application file can be personalized : front page, title block, general description of the program, etc.

10 input/4 output MES114 module.


Function

The 4 outputs included on the Sepam series 20 and 40 may be extended by adding an optional MES114 module with 10 inputs and 4 outputs, available in 3 versions:

- MES114: 10 DC inputs voltage from from 24 V DC to 250 V DC
 MES114E: 10 inputs, voltage 110-125 V AC or V DC
 MES114F: 10 inputs, voltage 220-250 V AC or V DC.

Characteristics

MFS11	14 modu	le					
Weight	14111040	0.28 kg (0.6	617 lb)				
Operating temperatur	·) °C (-13 °Fto	+158 °F)			
Environme	ntal	Same chara	cteristics as S	Sepam base	units		
		MES114	MES114	F	MES114	IF.	
Voltage	mpato	24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC	
Range		19.2 to 275 V DC	88 to 150 VV DC	88 to 132 V AC	176 to 275 V DC	176 to 264 V AC	
Frequency		/	1	47 to 63 Hz		47 to 63 H	 Z
Typical con		3 mA	3 mA	3 mA	3 mA	3 mA	
Typical swi threshold	tching	14 V DC	82 V DC	58 V AC	154 V DC	120 V AC	
Input limit	At state 0	≥ 19 V DC	≥88 V DC	≥88 V AC	≥ 176 V DC	≥ 176 V A	3
voltage	At state 1	≤6VDC	≤75 V DC	≤22 V AC	≤ 137 V DC	≤48 VAC	
Isolation of other isolat	inputs from ed groups	Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
Isolation be	etween	Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
O11 cc	ontrol re	lay outpu	ıt				
Voltage		DC	24 / 48 V DC	127 V DC	220 V DC	250 V CC	
		AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous	scurrent		8 A	8 A	8 A	8 A	8 A
Breaking ca	apacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	8 A
		Load L/R < 20 ms	6/2A	0.5 A	0.2 A	-	-
		Load L/R < 40 ms	4/1A	0.2 A	0.1 A	-	-
		Load $\cos \varphi > 0.3$	-	-	-	-	5 A
Making cap	pacity		< 15 A for 20	00 ms			
Isolation of from other in groups		Enhanced					
Isolation be outputs	etween	Enhanced					
O12 to	014 inc	dication r	elay out	put			
Voltage		DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	
		AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous	current		2A	2 A	2A	2A	2A
Breaking ca	apacity	Resistive load	2/1A	0.6 A	0.3 A	0.2 A	-
		Load L/R < 20 ms	2/1A	0.5 A	0.15 A	-	-
		Load cos φ > 0.3	-	-	-	-	1A
Making cap	pacity		< 15 A for 20	00 ms			
Isolation of in relation to isolated gro	o other	Enhanced					
Isolation be outputs	etween	Enhanced					

Description

- (L), (M) and (K): 3 removable, lockable screw-type connectors
- (L): connectors for 4 relay outputs:
- O11: 1 control relay output
- O12 to O14: 3 annunciation relay outputs
- M: connectors for 4 independent logic inputs I11 to I14
- $\widecheck{\mathbb{K}}$: connectors for 6 logic inputs:
- I21: 1 independent logic input
 I22 to I26: 5 common point logic inputs.
- 1 25-pin sub-D connector to connect the module to the base unit.

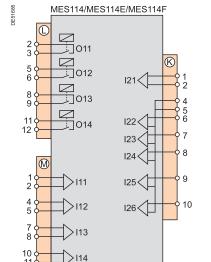
2 Voltage selector switch for MES114E and MES114F module inputs, to be set to:

- V DC for 10 DC voltage inputs (default setting)
- VAC for 10 AC voltage inputs.

3 Label to be filled in to indicate the chosen parameter setting for MES114E and MES114F input voltages.

The parameter setting status can be accessed in the "Sepam Diagnosis" screen of the SFT2841 software tool.

Parameter setting of the inputs for AC voltage (V AC setting) inhibits the "operating time measurement" function.



Assembly

- 1. Insert the 2 pins on the MES module into the slots 1 on the base unit.
- 2. Flatten the module up against the base unit to plug it into the connector 2.
- 3. Tighten the mounting screw 3.

Connection

The inputs are potential-free and the DC power supply source is external.

A DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Wiring of connectors (L), (M) and (K):

- Wiring with no fittings:
- □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (AWG 24-12)
- □ or 2 wires with maximum cross-section 0.2 to 1 mm² (AWG 24-18)
- \square stripped length: 8 to 10 mm (0.315 to 0.39 in)
- Wiring with fittings:
- □ terminal 5, recommended wiring with Telemecanique fitting:
- DZ5CE015D for 1 wire 1.5 mm² (AWG 16)
- DZ5CE025D for 1 wire 2.5 mm² (AWG 12)
- AZ5DE010D for 2 wires 1 mm² (AWG 18)
- □ tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

Logic input / output assignment of Sepam series 20

The use of the preset control and monitoring functions requires exclusive parameter setting and particular wiring of the inputs according to their application and the type of Sepam.

The advanced UMI or the SFT2841 software may be used to assign inputs and set the control and monitoring function parameters.

Since an input may only be assigned to a single function, not all the functions are available at the same time.

Example: if the logic discrimination function is used, the switching of groups of settings function may not be used.

Table of input/output assignment by application

	Table of input/output assignment by application										
Functions	S20	S23	T20	T23	M20	B21 - B22	Assignment				
Logic inputs											
Open position						-	I11				
Closed position	•		•	•		•	I12				
Logic discrimination, receive blocking input		•		•			I13				
Switching of groups of settings A/B						İ					
External reset		•	•	•	•	•	114				
External tripping 4 (1)	-										
External tripping 1 (1)	-	•	(2)	(2)		-	I21				
External network synchronization											
External tripping 2 ⁽¹⁾		•	(3)	■ ⁽³⁾	•	-	122				
Motor re-acceleration											
External tripping 3 ⁽¹⁾			(4)	(4)		-	123				
Buchholz alarm (1) (Buchholz alarm message)											
Rotor rotation detection					-						
Thermistor tripping (1)											
Inhibit earth fault protection											
End of charging position	•	•	•	•	•		124				
Thermostat alarm (1) (thermostat alarm message)			-	-							
Thermistor alarm (1)			-	-	=						
External tripping 5 and 50BF activation (1)		(1)		(1)							
Inhibit remote control, excluding TC1 (1)		•				•	125				
Inhibit remote control, including TC1 (1)	-		-		-						
SF6-1	-					-					
SF6-2		•		•	•	-	126				
Change of thermal settings											
Inhibit thermal overload			-		-						
Inhibit recloser											
Logic outputs											
Tripping	-	-	-	-	-	-	01				
Inhibit closing	•	•			-	•	O2				
Watchdog		•		•		•	04				
Close order	•	•			•	•	O11				

Note: all of the logic inputs are available via the communication link and are accessible in the SFT2841 control matrix for other non predefined applications.

- (1) These inputs have parameter setting with the prefix "NEG" for undervoltage type operation.
- (2) Buchholz/Gas trip message.
- (3) Thermostat trip message.
- (4) Pressure trip message.

Logic input / output assignment of Sepam series 40

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below.

- all the logic inputs, whether or not assigned to predefined functions, may be used for the SFT2841 customization functions according to specific application needs:

 □ in the control matrix, to link inputs to output relays, LED indications or display messages
- □ in the logic equation editor, as logic equation variables
- the control logic of each input may be inverted for undervoltage type operation.

Assignment table of logic inputs by application

Formations	C40 C44	0.40	T40 T40	MAA	C 40	A :
Functions	S40, S41	S42	T40, T42	M41	G40	Assignment
Logic inputs						
Open position	•	•	•	•	•	l11
Closed position	-	•	•	•	•	l12
Logic discrimination, receive blocking input 1	-	•	•		•	Free
Logic discrimination, receive blocking input 2		-				Free
Switching of groups of settings A/B	=	-	=		-	l13
External reset	=	-	-	-	-	Free
External tripping 1	-		•		-	Free
External tripping 2	-		-		-	Free
External tripping 3	-	•	•		-	Free
Buchholz/gas tripping			•			Free
Thermostat tripping			•			Free
Pressure tripping			-			Free
Thermistor tripping			•		•	Free
Buchholz/gas alarm			-			Free
Thermostat alarm			-			Free
Pressure alarm			-			Free
Thermistor alarm			•			Free
End of charging position	=		-			Free
Inhibit remote control		•			•	Free
SF6			-			Free
Inhibit recloser	-	-				Free
External synchronization			•			121
Inhibit thermal overload			-			Free
Switching of thermal settings					•	Free
Motor re-acceleration						Free
Rotor rotation detection						Free
Inhibit undercurrent						Free
Inhibit closing						Free
Open order			-			Free
Close order	=	-	-		-	Free
Phase voltage transformer fuse melting	-	-	-			Free
Residual voltage transformer fuse melting	=	-	-	-	-	Free
External positive active energy counter	-	-	-			Free
External negative active energy counter	-	•	-	-	-	Free
External positive reactive energy counter	-	•		•		Free
External negative reactive energy counter	-	•	-	-	-	Free
Logic outputs						
Tripping	-	•	-	•	-	01
Inhibit closing	•		=		-	O2
Watchdog	•		=		-	O4
Close order		•	-	•	-	O11

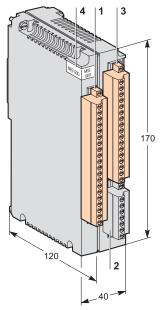
Note: all of the logic inputs are available via the communication link and are accessible in the SFT2841 matrix for other non predefined applications.

MES120, MES120G, MES120H 14 input / 6 output module

Presentation

Function

The 5 output relays included on the Sepam series 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 DC logic inputs and 6 outputs relays, 1 control relay output and 5 indication relay outputs.


Two modules are available for the different input supply voltage ranges and offer different switching thresholds:

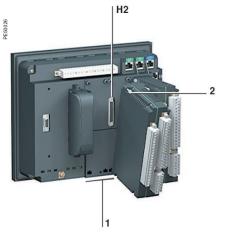
- MES120, 14 inputs 24 V DC to 250 V DC with a typical switching threshold of 14 V DC
- MES120G, 14 inputs 220 V DC to 250 V DC with a typical switching threshold of 155 V DC.
- MES120H, 14 inputs 110 V DC to 125 V DC with a typical switching threshold of 82 V DC

Characteristics

MES120 14 input / 6 output module.

MES120 14 Input / 6 output mo	aule.					
MES120 / MES1200	6 / MES120H modules					
Weight		0,38 kg (0,83 lb)				
Operating temperature		-25 °C to +70 °C (-13 °F to +158 °F)			
Environmental characteristics		Same characteris	tics as Sepam base	units		
Logic inputs		MES120	MES12	20G	MES120H	
Voltage		24 à 250 V DC	220 to 250	VDC	110 to 125 V DC	
Range		19.2 à 275 V DC	170 to 275	VDC	88 to 150 V DC	
Typical consumption		3 mA	3 mA		3 mA	
Typical switching threshold		14 V DC	155 V DC	-	82 V DC	
Input limit voltage	At state 0	< 6 V DC	< 144 V D	0	< 75 V DC	
	At state 1	> 19 V DC	> 170 V D	C	> 88 V DC	
Isolation of inputs from other is	olated groups	Enhanced	Enhanced		Enhanced	
Control relay outpu	it Ox01					
Voltage	DC	24/48 V DC	127 V DC	220 V DC	250 V DC	
	AC (47.5 to 63 Hz)	-	-	-	-	100 à 240 V AC
Continuous current		8 A	8 A	8 A	8 A	8 A
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	8 A
	Load L/R < 20 ms	6/2A	0.5 A	0.2 A	-	-
	Load L/R < 40 ms	4/1A	0.2 A	0.1 A	-	-
	Load p.f > 0.3	-	-	-	-	5 A
Making capacity		< 15 A for 200 ms				
Isolation of inputs from other is	<u> </u>	Enhanced				
Annunciation relay	input Ox02 to Ox06					
Tension	Continue	24/48 V DC	127 V DC	220 V DC	250 V DC	
	Alternative (47.5 à 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		2A	2A	2 A	2 A	2A
Breaking capacity	Load L/R < 20 ms	2/1A	0.5 A	0.15 A	0.2 A	-
	Load p.f > 0.3	-	-	-	-	1 A
Isolation of inputs from other is	olated groups	Enhanced				

Description


3 removable, lockable screw-type connectors.

- 1 20-pin connector for 9 logic inputs:
- Ix01 to Ix04: 4 independent logic inputs
- lx05 to lx09: 5 common point logic inputs.
- 27-pin connector for 5 common point logic inputs lx10 à lx14.
- 3 17-pin connector for 6 relay outputs:
- Ox01: 1 control relay output
- Ox02 to Ox06 : 5 indication relay outputs.

Addressing of MES120 module inputs / outputs:

- x = 1 for the module connected to H1
- \blacksquare x = 2 for the module connected to H2
- x = 3 for the module connected to H3.
- ${\bf 4\,MES120G,\,MES120H\,identification\,label\,(MES120\,modules\,have\,no\,labels)}.$

Installation of the second MES120 module, connected to base unit connector H2.

Installation of the second MES120 module, connected to base unit connector H2.

Assembly

Installation of an MES120 module on the base unit

- insert the 2 pins on the MES module into the slots 1 on the base unit
- push the module flat up against the base unit to plug it into the connector H2
- partially tighten the two mounting screws **2** before locking them.
- MES120 modules must be mounted in the following order:
- if only one module is required, connect it to connector H1
- if 2 modules are required, connect them to connectors H1 and H2
- if 3 modules are required (maximum configuration), the 3 connectors **H1**, **H2** and **H3** are used.

Connection

The inputs are potential-free and the DC power supply source is external.

A DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- ■Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- ■NEVER work alone.
- ■Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- ■Always use a properly rated voltage sensing device to confirm that all power is off.
- ■Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Wiring of connectors

- wiring without fittings:
- \square 1 wire with maximum cross-section 0.2 to 2.5 mm² (\ge AWG 24-12)
- □ or 2 wires with maximum cross-section 0.2 to 1 mm² (≥ AWG 24-16)
- \square stripped length: 8 to 10 mm (0.31 to 0.39 in)
- wiring with fittings:
- □ recommended wiring with Telemecanique fittings:
- DZ5CE015D for one 1.5 mm² wire (AWG 16)
- DZ5CE025D for one 2.5 mm² wire (AWG 12)
- AZ5DE010D for two 1 mm² wires (AWG 18)
- □ tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

MES120, MES120G, MES120H 14 input / 6 output module

Logic input / output assignment

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below. The control logic of each input may be inverted for undervoltage type operation. All the logic inputs, whether or not assigned to predefined functions, may be used for the customization functions according to specific application needs:

- in the control matrix (SFT2841 software), to connect an input to a logic output, a LED on the front of Sepam or a message for local indication on the display
- in the logic equation editor (SFT2841 software), as logic equation variables
- in Logipam (SFT2885 software) as input variables for the program in ladder language.

Logic output assignment table

Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assignmen
						T87		M88		G88				
Tripping / contactor control	•	•	•	•	•	•	•	-	•	•	•	-	•	O1
Inhibit closing		-	-	-	-	-	-	-	-	-	-	-	-	O2 by default
Closing		-	-		-	-	-		•	•	-		-	O3 by default
Watchdog		-	-		•	-	•		•	•	-		-	O5
Logic discrimination, blocking send 1		-	-		•	-	•		•	•	•		-	O102 by default
Logic discrimination, blocking send 2			-			•			•	-				O103 by default
Genset shutdown									•	-				Free
De-excitation									•					Free
Load shedding							-	•						Free
AT, closing of NO circuit breaker	-	•	•		•	•			•	-	•			Free
AT, closing of coupling	-	•	•	•	•	•			•		•	•		Free
AT, opening of coupling	-		-		•				•		-			Free
Tripping of capacitor step (1 to 4)													•	Free
Tripping of capacitor step (1 to 4)													•	Free

Note: The logic outputs assigned by default may be freely reassigned.

Assignment table for logic inputs common to all applications

Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assignment
1 diletions		001	002	007	101	T87	IVIO	M88	001	G88		D 03		Assignment
	_	_	_	_	_		_		_			_	_	1404
Closed circuit breaker	-	-	-	-	•	-	-	-	•	-	•	-	•	I101
Open circuit breaker	•		•	•	•	•	•	•	•	•	•	•	•	I102
Synchronization of Sepam internal clock via external pulse	•	•	-	-	•	•	•	•	•	•	•	•	•	l103
Switching of groups of settings A/B		-	-		•		-		•	-	•		-	Free
External reset	•	-	-		-		-		•	-	-		-	Free
Earthing switch closed	-	-	-		-	-	-		-	-	-	-	-	Free
Earthing switch open	-	-	-	-	-	-	-	-	-	-	-	-	-	Free
External trip 1	-	-	-	-	-	-	-	-	-	-	-	-	-	Free
External trip 2	-	-	-	-	-	-	-	-	-	-	-	-	-	Free
External trip 3	-	-	-	-	-	-	-	-	-	-	-	-	-	Free
End of charging position	•	-	-	-	-	-	-		•	-	-	-	-	Free
Inhibit remote control (Local)	•	-	-		-		-		•	-	-		-	Free
SF6 pressure default	•	-	-		-		-		•	-	•		-	Free
Inhibit closing	•	-	-		-		-		•	-	•		-	Free
Open order	•				•		•		•		•		•	Free
Close order	•	-	-		•		-		•	-	•		-	Free
Phase VT fuse blown	•	-	-		•		-		•	-	•		-	Free
V0 VT fuse blown	•	-	-		•		-		•	-	•		-	Free
External positive active energy meter	•	-	-		•		-		•	-	•		-	Free
External negative active energy meter	•	-	-		•		-		•	-	•		-	Free
External positive reactive energy meter	•	-	-		•		-		•	-	•		-	Free
External negative reactive energy meter	•	-	-		•		-		•	-	•		-	Free
Racked out circuit breaker	•	-	-		•		-		•	-	•		-	Free
Switch A closed	•	-	-		•		-	•	•		•		-	Free
Switch A open	-	•	•	•	•	•	•	•	•	•	•	•	-	Free
Switch B closed	-	•	•	•	•	•	•	•	•	•	•	•	-	Free
Switch B open	-	-	-		•		-	•	•	-	•		-	Free
Closing-coil monitoring					•	•			•		•	•	•	Free

MES120, MES120G, MES120H 14 input / 6 output module

Logic input / output assignment

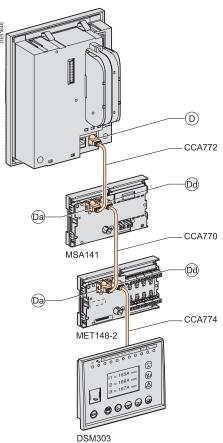
Assignment table	of logic inputs I	by application
Assignment table	oi iodic ilibută i	ov abblication

	Assignment table of logic inputs by application													
Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assignment
						T87		M88		G88				
Inhibit recloser		_	_	_										Free
Inhibit thermal overload	_					-			•					Free
Switching of thermal settings		_		_	_								_	Free
Blocking reception 1	•				_		_	_						Free
	_	_		-	_	-			-	_	_	_		
Blocking reception 2			-	-		-			-					Free
Buchholz trip														Free
Thermostat trip						-								Free
Pressure trip					•	•		•						Free
Thermistor trip					•	•	•	-	•	-				Free
Buchholz alarm					•	•		-		-				Free
Thermostat alarm					•	-		•		-				Free
Pressure alarm					•	-				-				Free
Thermistor alarm					-	-	•		•	-				Free
Rotor speed measurement							•		•					I104
Rotor rotation detection														Free
Motor re-acceleration							•	-						Free
Load shedding request														Free
Inhibit undercurrent														Free
Priority genset shutdown														Free
De-excitation														Free
Close enable (ANSI 25)					•									Free
Inhibit opposite-side remote control (local)	•			_	_	_			_	_	_	_		Free
	-				-	-					-	-		
Inhibit remote-control coupling (local)	-													Free
Coupling open						•								Free
Coupling closed	•	•		•	•	•			•	-	•			Free
Opposite side open	•	-	•	•	•	-			•	-	•	-		Free
Opposite side closed	-	-	•	•	•	-			•	•	•			Free
Selector set to Manual (ANSI 43)	-	-			-	-			•	-	•			Free
Selector set to Auto (ANSI 43)	-	•			•	-			•	•	•			Free
Selector set to Circuit breaker (ANSI 10)			-	-	-				•		•			Free
Selector set to Coupling (ANSI 10)					•				•	•	•			Free
Opposite-side circuit breaker disconnected				•	•				•		•			Free
Coupling circuit breaker disconnected										-				Free
Coupling close order				-		-				-		-		Free
Opposite-side voltage OK		_		•	_	_			_	-	_	_		Free
	•			_	_	•			-	-	_	•		Free
Inhibit closing of coupling	-			-	-	-			-	_	-	-		
Automatic closing order	-	-	-	-	-	-			-	-				Free
External closing order 1											•	•		Free
External closing order 2											•			Free
Additional phase voltage transformer fuse											•	-		Free
blown														
Additional V0 voltage transformer fuse blown														Free
Capacitor step 1 open													-	Free
Capacitor step 1 closed													-	Free
Capacitor step 2 open													•	Free
Capacitor step 2 closed													-	Free
Capacitor step 3 open													•	Free
Capacitor step 3 closed														Free
Capacitor step 4 open													•	Free
Capacitor step 4 closed													-	Free
Step 1 opening order													•	Free
Step 2 opening order														Free
Step 3 opening order													•	Free
Step 4 opening order													_	Free
													-	
Step 1 closing order													-	Free
Step 2 closing order														Free
Step 3 closing order													•	Free
Step 4 closing order													-	Free
Step 1 external trip													-	Free
Step 2 external trip													•	Free
Step 3 external trip													-	Free
Step 4 external trip														Free
Capacitor step 1 VAR control													•	Free
Capacitor step 2 VAR control													-	Free
Capacitor step 3 VAR control													-	Free
Capacitor step 4 VAR control													-	Free
External capacitor step control inhibit													_	Free
Manual capacitor step control	-	-				_							_	Free
			-				-							
Automatic capacitor step control	Ь					L					L		-	Free

Selection guide

4 remote modules are proposed as options to enhance the Sepam base unit functions:

- the number and type of remote modules compatible with the base unit depend on the Sepam application
- the DSM303 remote advanced UMI module is only compatible with base units that do not have integrated advanced UMIs.


			Sepam s	eries 20	Sepa	m series 40	Sepam s			
			S2x, B2x	T2x, M2x	S4x	T4x, M4x, G4x	S8x, B8x	T8x, G8x	M8x, C8x	
MET148-2	Temperature sensor module	See page 159	0	1	0	2	0	2	2	
MSA141	Analog output module	See page 161	1	1	1	1	1	1	1	
DSM303	Remote advanced UMI module	See page 162	1	1	1	1	1	1	1	
MCS025	Synchro-check module	See page 164	0	0	0	0	1	1	0	
Number of sets of interlinked modules / maximum number of remote modules			1 set of 3 into modules	erlinked	1 set of module	3 interlinked es	5 modules split between 2 sets of interlinked modules			

AATTENTION

HAZARD OF NON-OPERATION

The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

Example of inter-module linking on Sepam series 20.

Connection

Connection cords

Different combinations of modules may be connected using cords fitted with 2 black RJ45 connectors, which come in 3 lengths:

- CCA770: length = 0.6 m (2 ft)
- CCA772: length = 2 m (6.6 ft)
- CCA774: length = 4 m (13.1 ft).

The modules are linked by cords which provide the power supply and act as functional links with the Sepam unit (connector \bigcirc) to connector \bigcirc) to \bigcirc , \bigcirc (\bigcirc) to \bigcirc , \bigcirc ...).

Rules on inter-module linking

- linking of 3 modules maximum
- DSM303 and MCS025 modules may only be connected at the end of the link.

Maximum advisable configurations

Sepam series 20 and Sepam series 40: just 1 set of interlinked modules

Base	Cord	Module 1	Cord	Module 2	Cord	Module 3
DESTATO SE	D 0a					- 00000 0 00000
Series 20	CCA772	MSA141	CCA770	MET148-2	CCA774	DSM303
Series 40	CCA772	MSA141	CCA770	MET148-2	CCA774	DSM303
Series 40	CCA772	MSA141	CCA770	MET148-2	CCA772	MET148-2
Series 40	CCA772	MET148-2	CCA770	MET148-2	CCA774	DSM303

Sepam series 80: 2 sets of interlinked modules

Sepam series 80 has 2 connection ports for remote modules, \bigcirc 1) and \bigcirc 2. Modules may be connected to either port.

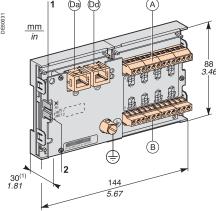
Base	Cord	Module 1	Cord	Module 2	Cord	Module 3
Set 1 D1	CCA772	MET148-2	CCA770	MET148-2	CCA774	DSM303
DES 147_SE						3:::::::::::::::::::::::::::::::::::::
	D2 Da				-	-
Set 2 D2	CCA772	MSA141	CCA785	MCS025	-	-

MET148-2 Temperature sensor module

MET148-2 Temperature sensor module.

Function

The MET148-2 module can be used to connect 8 temperature sensors (RTDs) of the same type:


- Pt100, Ni100 or Ni120 type RTDs, according to parameter setting
- 3-wire temperature sensors
- A single module for each Sepam series 20 base unit, to be connected by one of the CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords
- 2 modules for each Sepam series 40 or series 80 base unit, to be connected by CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords The temperature measurement (e.g. in a transformer or motor winding) is utilized by the following protection functions:
- Thermal overload (to take ambient temperature into account)
- Temperature monitoring.

Characteristics

MET148-2 module				
Weight	0.2 kg (0.441 lb)			
Assembly	On symmetrical DIN rail			
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)			
Environmental characteristics	Same characteristics as Sepam base units			
Temperature sensors	Pt100	Ni100 / Ni120		
Isolation from earth	None	None		
Current injected in RTD	4 mA	4 mA		

Description and dimensions

- (A) Terminal block for RTDs 1 to 4.
- (B) Terminal block for RTDs 5 to 8.
- (Da) RJ45 connector to connect the module to the base unit with a CCA77x cord
- (according to application).
- (+) Grounding/earthing terminal.
- 1 Jumper for impedance matching with load resistor (Rc), to be set to:
 - 🎉, if the module is not the last interlinked module (default position)
 - Rc, if the module is the last interlinked module.
- 2 Jumper used to select module number, to be set to:
 - MET1: 1st MET148-2 module, to measure temperatures T1 to T8 (default position)
 - MET2: 2nd MET148-2 module, to measure temperatures T9 to T16 (for Sepam series 40 and series 80 only).

(1) 70 mm (2.8 in) with CCA77x cord connected.

MET148-2

MET148-2 Temperature sensor module

Connection

▲ DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Check that the temperature sensors are isolated from dangerous voltages.

Failure to follow these instructions will result in death or serious injury.

Connection of the earthing terminal

By tinned copper braid with cross-section \geq 6 mm² (AWG 10) or cable with cross-section \geq 2.5 mm² (AWG 12) and length \leq 200 mm (7.9 in), fitted with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

Connection of RTDs to screw-type connectors

- 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)
- or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).

Recommended cross-sections according to distance:

■ Up to 100 m (330 ft) \geq 1 mm² (AWG 18)

■ Up to 300 m (990 ft) > 1.5 mm² (AWG 16)

■ Up to 1 km (0.62 mi) \geq 2.5 mm² (AWG 12)

Maximum distance between sensor and module: 1 km (0.62 mi).

Wiring precautions

■ It is preferable to use shielded cables.

The use of unshielded cables can cause measurement errors which vary in degree according to the level of surrounding electromagnetic disturbance

- Only connect the shielding at the MET148-2 end, in the shortest manner possible,
- to the corresponding terminals of connectors (A) and (B)
- Do not connect the shielding at the RTD end.

Accuracy derating according to wiring

The error Dt is proportional to the length of the cable and inversely proportional to the cable cross-section:

$$\Delta t(^{\circ}C) = 2 \times \frac{L(km)}{S(mm^2)}$$

- ±2.1°C/km for 0.93 mm² cross-section (AWG 18)
- ±1°C/km for 1.92 mm² cross-section (AWG 14).

MSA141 Analog output module

MSA141 analog output module.

Function

The MSA141 module converts one of the Sepam measurements into an analog signal:

- selection of the measurement to be converted by parameter setting
- 0-10 mA, 4-20 mA, 0-20 mA analog signal according to parameter setting
- scaling of the analog signal by setting minimum and maximum values of the converted measurement.

Example: the setting used to have phase current 1 as a 0-10 mA analog output with a dynamic range of 0 to $300\,\mathrm{A}\,\mathrm{is}$:

□ minimum value = 0

□ maximum value = 3000

■ a single module for each Sepam base unit, to be connected by one of the CCA770 (0.6m or 2 ft), CCA772 (2m or 6.6 ft) or CCA774 (4m or 13.1 ft) cords.

The analog output can also be remotely managed via the communication network.

Characteristics

MSA141 module							
Weight	0.2 kg (0.441 lb)						
Assembly	On symm	etrical DIN rail					
Operating temperature	-25 °C to	+70 °C (-13 °F to	+158 °F)				
Environmental characteristics	Same characteristics as Sepam base units						
Analog output							
Current	4-20 mA,	0-20 mA, 0-10 m	A				
Scaling	Minimum	value					
(no data input checking)	Maximum	n value					
Load impedance	< 600 Ω (including wiring)						
Accuracy	0.5 %						
Measurements	Unit	Series 20	Series 40	Series 80			
available							
Phase and residual currents	0.1 A	•	•	•			
Phase-to-neutral and phase-to- phase voltages	1 V	•	•	•			
Frequency	0.01 Hz	•	•	•			
Thermal capacity used	1%	•	•	•			
Temperatures	1°C	•	•	•			
Active power	0.1 kW		•	•			
Reactive power	0.1 kvar		•	•			
Apparent power	0.1 kVA		•	•			
Power factor	0.01			•			
Remote setting via communication link		•	•	•			

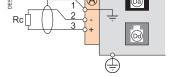
Description and dimensions

- (A) Terminal block for analog output.
- (Da) RJ45 socket to connect the module to the base unit with a CCA77x cord.
- (according to application).
- (±) Earthing terminal.
- 1 Jumper for impedance matching with load resistor (Rc), to be set to:
 - 🖟, if the module is not the last interlinked module (default position)
 - Rc, if the module is the last interlinked module.

Connection

Connection of the earthing terminal

By tinned copper braid with cross-section \geqslant 6 mm² (AWG 10) or cable with cross-section \geqslant 2.5 mm² (AWG 12) and length \leqslant 200 mm (7.9 in), equipped with a 4 mm (0.16 in) ring lug.


Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

Connection of analog output to screw-type connector

- 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)
- or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).

Wiring precautions

- It is preferable to use shielded cables
- Use tinned copper braid to connect the shielding at least at the MSA141 end.

(1) 70 mm (2.8 in) with CCA77x cord connected.

mm

30⁽¹

DSM303 Remote advanced UMI module

DSM303 remote advanced UMI module.

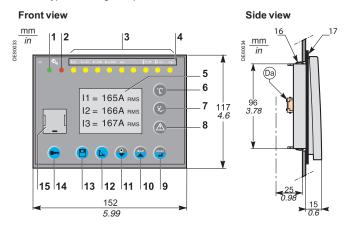
Function

When associated with a Sepam that does not have its own advanced user-machine interface, the DSM303 offers all the functions available on a Sepam integrated advanced UMI.

It can be installed on the front panel of the cubicle in the most suitable operating location:

- reduced depth < 30 mm (1.2 in)
- a single module for each Sepam, to be connected by one of the CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords.

The module cannot be connected to Sepam units with integrated advanced UMIs.


Characteristics

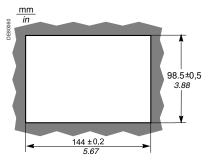
DSM303 module	
Weight	0.3 kg (0.661 lb)
Assembly	Flush-mounted
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)
Environmental characteristics	Same characteristics as for Sepam base units

DSM303 Remote advanced UMI module

Description and dimensions

The module is simply flush-mounted and secured by its clips. No additional screw-type fastening is required.

- 1 Green LED: Sepam on.
- 2 Red LED:
 - steadily on: module unavailable
 - flashing: Sepam link unavailable.
- 3 9 yellow LEDs.
- 4 Label identifying the LEDs.
- 5 Graphic LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- 10 Alarm acknowledgment and clearing (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameters.
- 14 Entry of 2 passwords.
- 15 PC connection port.
- 16 Mounting clip.
- 17 Gasket to ensure NEMA 12 tightness (gasket supplied with the DSM303 module, to be installed if necessary).
- (Da) RJ45 lateral output connector to connect the module to the base unit with a CCA77x cord.


A CAUTION

HAZARD OF CUTS

Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

Cut-out for flush-mounting (mounting plate thickness < 3 mm or 0.12 in)

Connection

(a) RJ45 socket to connect the module to the base unit with a CCA77x cord. The DSM303 module is always the last interlinked remote module and it systematically ensures impedance matching by load resistor (Rc).

MCS025 synchro-check module.

Function

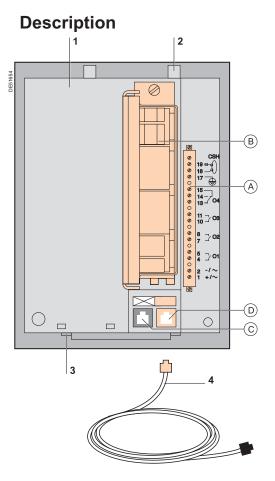
The MCS025 module checks the voltages upstream and downstream of a circuit breaker to ensure safe closing (ANSI 25).

It checks the differences in amplitude, frequency and phase between the two measured voltages, taking into account dead line/busbar conditions.

Three relay outputs may be used to send the close enable to several Sepam series 80 units.

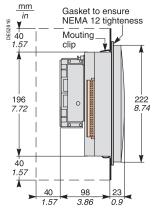
The circuit-breaker control function of each Sepam series 80 unit will take this close enable into account.

The settings for the synchro-check function and the measurements carried out by the module may be accessed by the SFT2841 setting and operating software, similar to the other settings and measurements for the Sepam series 80.

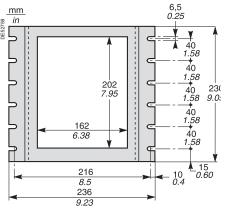

The MCS025 module is supplied ready for operation with:

- the CCA620 connector for connection of the relay outputs and the power supply
- the CCT640 connector for voltage connection
- the CCA785 cord for connection between the module and the Sepam series 80 base unit.

Characteristics

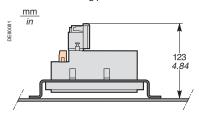

MCS025 module						
Weight		1.35 kg (2.98 lb)				
Assembly	· · · · · · · · · · · · · · · · · · ·					
Operating temperature		-25 °C to +70 °C (-13 °F to +158 °F)			
Environmental characteristics		Same characteris	tics as Sepam base unit	ts		
Voltage inputs						
Impédance d'entrée		> 100 kΩ				
Consommation		< 0.015 VA (VT 10	0 V)			
Tenue thermique permanente		240 V				
Surcharge 1 seconde		480 V				
Relay outputs						
Relay outputs O1 and O2						
Voltage	DC	24/48 V DC	127 V DC	220 V DC		
	AC (47.5 to 63 Hz)				100 à 240 V AC	
Continuous current		8 A	8 A	8 A	8 A	
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A		
	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A		
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A		
	Resistive load				8 A	
	Load p.f. > 0.3				5 A	
Making capacity		< 15 ms for 200 m	s			
Isolation of outputs from other other isolated groups		Enhanced				
Relay outputs O3 and O4	(O4 not used)					
Voltage	DC	24/48 V DC	127 V DC	220 V DC		
	AC (47.5 to 63 Hz)				100 to 240 V AC	
Continuous current	· · · · · · · · · · · · · · · · · · ·	2 A	2 A	2 A	2A	
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5 A	0.15 A		
	Load p.f. > 0.3				5 A	
Isolation of outputs from other other isolated groups		Enhanced				
Power supply						
Voltage		24 to 250 V DC, -20 % / +10 %		110 to 240 V AC, -20 % / + 0 % 47.5 to 63 Hz		
Maximum consumption		6 W		9 VA		
Inrush current		< 10 A for 10 ms		< 15 A for one half period		
Acceptable momentary outages	3	10 ms		10 ms		

- 1 MCS025 module
- (A) CCA620 20-pin connector for:
 - auxiliary power supply
 - 4 relay outputs:
 - □ O1, O2, O3: close enable.
 - □ O4: not used
- (B) CCT640 connector (phase-to-neutral or phase-tophase) for the two input voltages to be synchronized
- © RJ45 connector, not used
- (D) RJ45 connector for module connection to the Sepam series 80 base unit, either directly or via another remote module.
- 2 Two mounting clips
- 3 Two holding pins for the flush-mount position
- 4 CCA785 connection cord



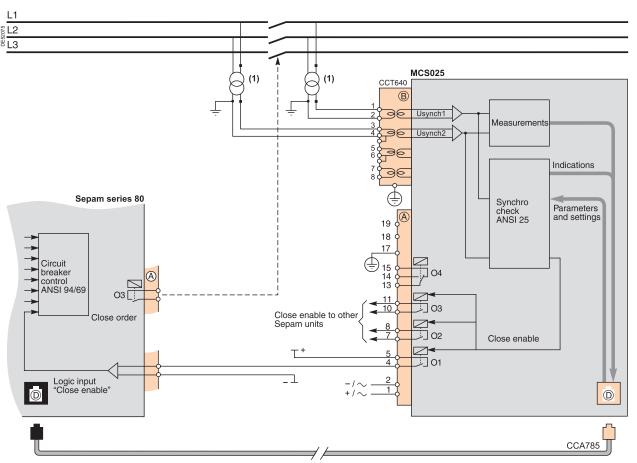
MCS025 Synchro-check module

Dimensions



MCS025.

Assembly with AMT840 mounting plate


The MCS025 module should be mounted at the back of the compartment using the AMT840 mounting plate.

AMT840 mounting plate.

Caractéristiques de raccordement

Connector	Туре	Reference	Wiring
A	Screw-type	CCA620	■ Wiring with no fittings: □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (> AWG 24-12) or 2 wires with cross-section 0.2 to 1 mm² (>AWG 24-16) □ stripped length: 8 to 10 mm (0.31 à 0.39 in) ■ Wiring with fittings: □ recommended wiring with Telemecanique fittings: □ DZ5CE015D for 1 wire 1.5 mm2 (AWG 16) □ DZ5CE025D for 1 wire 2.5 mm2 (AWG 12) - AZ5DE010D for 2 x 1 mm² wires (AWG 18) □ tube length: 8.2 mm (0.32 in) □ stripped length: 8 mm (0.31 in)
B	Screw-type	CCT640	VT wiring: same as wiring of the CCA620 Earthing connection: by 4 mm (0.15 in) ring lug
D	Orange RJ45 connector		CCA785, special prefabricated cord supplied with the MCS025 module: ■ orange RJ45 connector for connection to port ① on the MCS025 module ■ black RJ45 connector for connection to the Sepam series 80 base unit, either directly or via another remote module.

(1) Phase-to-phase or phase-to-neutral connection.

A ATTENTION

HAZARD OF NON-OPERATION

The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

▲ DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- \blacksquare Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Sepam 100 LD.

Sepam 100 LD: front panel.

Sepam 100 LD is a high impedance differential relay. It provides restricted earth fault, busbar and machine protection.

Advantages

- stability with respect to external faults
- sensitivity to internal faults
- speed (typical response time: 15 ms to 5 ls)
- outputs with or without latching
- local and remote acknowledgment
- high level of immunity to electromagnetic interference.

Description

Sepam 100 LD is available in 4 versions:

- single-phase for restricted earth protection
- three-phase for busbar and machine protection
- 50 or 60 Hz

50 Hz single-phase: 100 LD X 51 50 Hz three-phase: 100 LD X 53 60 Hz single-phase: 100 LD X 61 60 Hz three-phase: 100 LD X 63. The front of Sepam 100 LD includes:

■ 2 signal lamps:

□ power "on" indicator

□ latching "trip" indicator indicating output relay tripping

- protection setting dial
- "reset" button for acknowledging output relays and the "trip" indicator.

When the button is activated, the "trip" indicator undergoes a lamp test.

The back of Sepam 100 LD includes:

■ input/output connectors:

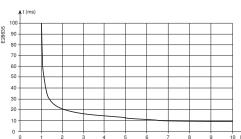
□ an 8-pin connector for toroid inputs and remote acknowledgment

□ an 8-pin connector for "tripping" outputs and power supply

□ a 4-pin connector for "tripping" outputs

■ a microswitch used to configure the relay "with" or "without" latching.

Sepam 100 LD has:


- 1 or 3 current inputs with a common point according to whether it is a single-phase or three-phase version
- a logic input (isolated) for remote acknowledgment
- "tripping" output relay with 5 contacts (3 normally open contacts and 2 normally closed contacts).

Sepam 100 LD operates in 5 voltage ranges (please specify when ordering):

- 24-30 V DC
- 48-125 V DC
- 220-250 V DC
- 100-127 VAC
- 220-240 V AC.

Sepam 100 LD is associated with a stabilization plate (or 3 plates) with variable resistance, enabling operation with 1 A or 5 A transformers.

Operation curve

Parameter setting

Microswitch SW1, accessible on the back of Sepam 100 LD, is used to choose "with" or "without" latching.

Without latching:

With latching:

Sepam 100 LDHigh impedance differential protection

Settings

Settings	Setting values			
Setting current Is	5 to 40 % In by steps of 5 % In			
	40 to 80 % In by steps of 10	0 % In		
	The dial on the front of the	device is used for setting		
Stabilizing resistor plate	Rs = 0Ω to 68Ω	P = 280 W		
	Rs = 0Ω to 150Ω	P = 280 W		
	Rs = 0Ω to 270Ω	P = 280 W		
	Rs = 0Ω to 470Ω	P = 180 W		
	Rs = 0Ω to 680Ω	P = 180 W		
Accuracy / performance				
Setting	±5 %			
Pickup (%)	93 % ±5 %			
Response time	≤ 10 ms for I ≥ 10 ls			
	≤ 16 ms for I ≥ 5 Is			
	≤ 25 ms for I ≥ 2 Is			
Memory time	≤ 30 ms			

Sepam 100 LD

Sensors and surge limiters

n: CT transformation ratiop: Number of CTs

Rf1, Rf2: Wiring resistance on either side of Rs

Rf = max (Rf1, Rf2)

R1, ...Rp: CT secondary resistances
R = max (R1, ...Rp)
Rs: Stabilizing resistor
RI: Surge limiter

icc: Maximum external short-circuit

current in CT secondary winding is: Protection setting (A)

if: Current in RI

i_1, i_p: CT magnetizing currents
Vk1, Vkp: CT knee-point voltages
Vk = min (Vk1,...Vkp)

Specifying the sensors

Current transformers

To ensure the stability and sensitivity of Sepam 100 LD, the stabilization resistor and characteristics of the current transformers (CTs) are calculated as follows.

Choice of current transformers

- all the CTs must have the same transformation ratio n
- the knee-point voltages are chosen so that:

Vk > 2 x (R + Rf) x icc

Choice of stabilizing resistor

$$\frac{R + Rf}{is} \times icc < Rs \le \frac{Vk}{2 \times is}$$

Surge limiter

The approximate voltage developed by a CT in the event of an internal fault is:

$$V = 2 \sqrt{22 \times Vk \times (icc \times (R + Rf + Rs) - Vk)}$$

If the value exceeds 3 kV, it is necessary to add an RI surge limiter in parallel with the relay and stabilizing resistor in order to protect the CTs (see: surge limiter).

Protection sensitivity

The CTs consume magnetizing current and the surge limiter, when installed, creates fault current. The minimum residual primary current detected by the protection is therefore:

$$Id = n \times (i_m 1 + ... i_m p + if + is)$$

with

- i_1, ...imp are read on the CT magnetization curves at V = Rs x is
- if is the total earth leakage current of the surge limiter for Vs = Rs x is, i.e. the sum of the earth leakage currents of the N limiter units installed in parallel: if = N x ib (see: surge limiter).

Surge limiter

If the calculations have shown that it is necessary to install a surge limiter in parallel with the relay and Rs to protect the CTs, it is determined as follows.

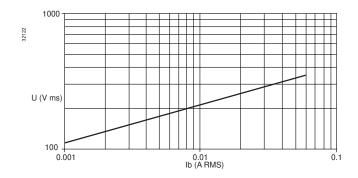
Choice

Standard references

- the surge limiters on offer consist of limiter blocks which are independent of each other. Each block accepts a maximum current of 40 A RMS for 1 s. By installing the blocks in parallel, it is possible to obtain the appropriate limiter for the application.
- there are two standard references:

 $\hfill \square$ a single module, comprising one block

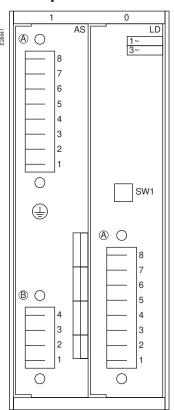
 $\hfill \square$ a triple module, comprising three independent blocks which are aligned.


Calculation of the number of blocks per phase

According to i, max. RMS short-circuit current in the secondary winding of a CT, the number of blocks required per phase is calculated: $N \ge \frac{1}{40}$

- for a three-phase relay, N triple modules should be ordered
- for a single-phase relay, N blocks, made up of triple and single modules.

Earth leakage current

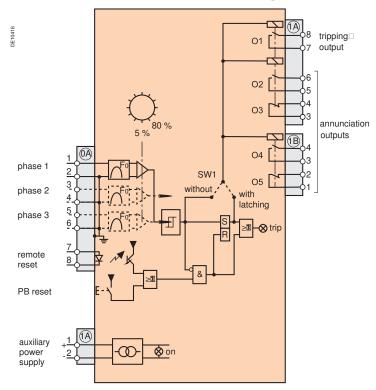

A limiter block accepts a max. steady state voltage of 325 V RMS and presents an earth fault current lb:

Sepam 100 LD

Description and connection

Rear panel

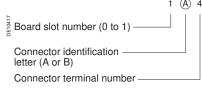
(A): 8-pin CCA608 connector

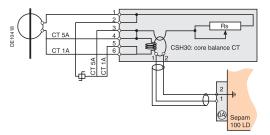

(toroid and remote reloading inputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.

(1A): 8-pin CCA608 connector

(power supply and "annunciation and tripping" outputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.

(B): CCA604 connector ("annunciation" outputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.


Functional and connection diagram


Note: only 0A1 and 0A2 terminals are available in the single-phase version.

Terminal identification

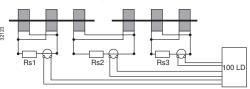
Each terminal is identified by 3 characters.

Connection of the tabilization plate

Connection of CTs and surge limiters:

- 5 A rating: between terminals 1-2 and 3-4
- 1 A rating: between terminals 1-2 and 5-6
- items 1 to 6: clamp screw connections for 6 mm2 wire
- items 1, 2: secondary of CSH30 core balance CT, connected to ②A.

Wire to be used:

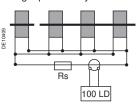

- sheathed, shielded wire
- min. cross-section 0.93 mm2 (AWG 18) (max. 2.5 mm²)
- resistance load per unit length < 100 mW/m
- min. dielectric strength: 1000 V
- max. length: 2 m.

Connect the wire shielding in the shortest way possible to $\widehat{0A}$.

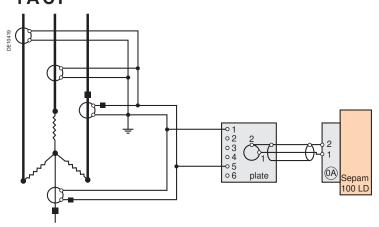
The shielding is grounded in Sepam 100 LD. Do not ground the wire by any other means.

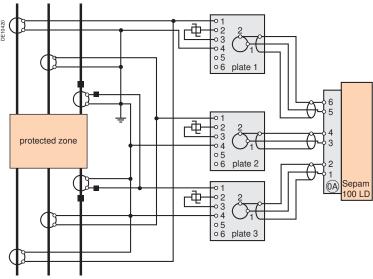
Press the wire against the metal frame of the cubicle to improve immunity to radiated interference.

■ Example 1 (N = 2 blocks per phase): 2 triple modules for a three-phase relay.



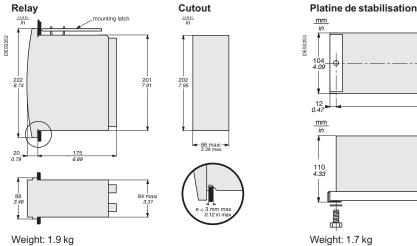
Connection of the surge limiter

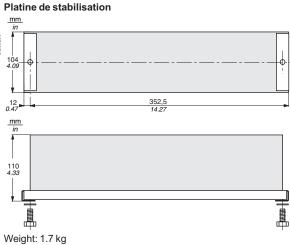

- single unit = outputs with screw M10
- triple unit = outputs with holes ø 10.4 (see "installation").
- Example 2 (N = 2 blocks per phase): 2 single modules for a single-phase relay.


■ Example 3 (N = 4 blocks per phase 1 triple module + 1 single module for a single-phase relay.

Restricted earth protection (single-phase) 1 A CT

Busbar protection (three-phase) 5 A CT - with surge limiters




Sepam 100 LDCharacteristics and dimensions

Breaking capacity (contact 01) Resistive dc load Resistive ac load 4 A 0.7A 0.3A Breaking capacity (contacts 02 to 05) Resistive ac load 3.4 A 2 A 0.3A 0.15A Resistive ac load 3.4 A 2 A 0.3A 0.15A Power supply Range Consumption when inactive Max. consumption Inrush current 24/30 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 3 W 6 W < 10 A for 10 ms 220/250 V DC ±20 % 3 W 6 W < 10 A for 10 ms 220/250 V DC ±20 % +10 % 6 VA 10 VA < 15 A for 10 ms 220/240 V AC ±20 % +10 % 12 VA 16 VA < 15 A for 10 ms 200/240 V AC ±20 % +10 % 12 VA 16 VA < 15 A for 10 ms Coperating frequency #7.5 & 6 B Hz #7.5 & C to 55 *C Storage IEC 60068-2 -5 *C to 55 *C Storage IEC 60058-2 Class I	Electrical chara	cteristics							
Sec. current Sol0 In In In In In In In I	Analog inputs (with	h plate)							
Logic input (remote reloading input) 24/250 V DC 127/240 V AC	Constant current		10 ln						
Maximum power consumption	3 sec. current		500 In						
Maximum power consumption 3.5 W 3.7 VA	Logic input (remote	e reloading input)							
Constant current	Voltage		24/250 V DC	127/240 V	AC .				
Constant current	Maximum power consu	mption	3.5 W	3.7 VA					
Voltage 24/30 V DC 48 V DC 127 V DC/VAC 220 V DC/V Breaking capacity (contact 01) Resistive ac load 8A 8A Breaking capacity (contact 02 to 05) Resistive ac load 3.4 A 2 A 0.3 A 0.15 A Power supply Range Consumption when inactive Max. consumption Inrush current 24/30 V DC ±20 % 2.5 W 6 W <10 A for 10 ms	Logic outputs								
Breaking capacity (contact 011) Resistive do load (contact 011) 7A 4A 0.7A 0.3A Breaking capacity (contacts 02 to 05) Resistive ac load (contacts 02 to 05) 3A 0.15A Power supply Range Consumption when inactive (contacts 02 to 05) Max. consumption (contacts 02 to 05) Inrush current (contacts 02 to 05) 48/125 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 3 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 3 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 3 W 6 W < 10 A for 10 ms 24/30 V DC ±20 % 3 W 6 W < 10 A for 10 ms 20/250 V DC ±20 % +10 % 4 W 8 W < 10 A for 10 ms 20/250 V DC -20 % +10 % 6 VA 10 VA < 15 A for 10 ms 20/250 V DC -20 % +10 % 12 VA 16 VA < 15 A for 10 ms 20/250	Constant current		8 A						
Resistive acload Resistive deload 3.4 A 2.A 0.3 A 0.15 A 0.1	Voltage		24/30 V DC	48 V DC		127 V DC/V AC		220 V DC/V AC	
Resistive do load 3.4		Resistive dc load	7A	4 A		0.7 A		0.3 A	
Contacts 02 to 05 Resistive ac load 4 A 4 A Power supply 24/30 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms 48/125 V DC ±20 % 3 W 6 W < 10 A for 10 ms	(contact 01)	Resistive ac load				8 A		8 A	
Name		Resistive dc load	3.4 A	2 A		0.3 A	(0.15 A	
Range Consumption when inactive Max. consumption Inrush current 24/30 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms	(contacts 02 to 05)	Resistive ac load				4 A		4 A	
24/30 V DC ±20 % 2.5 W 6 W < 10 A for 10 ms	<td>Power supply</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Power supply							
48/125 V DC ±20 % 3 W 6 W <10 A for 10 ms		Range	Consumption when inactive	е	Max. consumption	on Inr	ush current		
220/250 V DC	24/30 V DC	±20 %	2.5 W		6 W	< 1	0 A for 10 ms		
100/127 VAC -20 % +10 % 6 VA 10 VA <15 A for 10 ms	48/125 V DC	±20 %	3 W		6 W	< 1	0 A for 10 ms		
220/240 V AC	220/250 V DC	-20 % +10 %	4 W		8 W	< 1	0 A for 10 ms		
Operating frequency 47.5 à 63 Hz Environmental characteristics Climatic Operation IEC 60068-2 -5 °C to 55 °C Storage IEC 60068-2 -25 °C to 70 °C Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60255-25-1 5 kV Electroanguetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IE	100/127 V AC	-20 % +10 %	6 VA		10 VA	< 1	5 A for 10 ms		
Environmental characteristics Climatic Operation IEC 60068-2 -5 °C to 55 °C Storage IEC 60068-2 -25 °C to 70 °C Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 6095-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class II Single-direction transients IEC 60055-22-2 Class III	220/240 V AC	-20 % +10 %	12 VA		16 VA	< 1	5 A for 10 ms		
Climatic Operation IEC 60068-2 -5 °C to 55 °C Storage IEC 60068-2 -25 °C to 70 °C Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 60000-4-5	Operating frequency		47.5 à 63 Hz						
Operation IEC 60068-2 -5 °C to 55 °C Storage IEC 60068-2 -25 °C to 70 °C Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Environmental	characteristics							
Storage IEC 60068-2 -25 °C to 70 °C Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Climatic								
Damp heat IEC 60068-2 95 % to 40 °C Influence of corrosion IEC 60654-4 Class I Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Operation		IEC 60068-2			-5	°C to 55 °C		
Influence of corrosion IEC 60654-4 Class	Storage		IEC 60068-2			-25	5 °C to 70 °C		
Mechanical Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Damp heat		IEC 60068-2			95	% to 40 °C		
Degree of protection IEC 60529 IP 41 On front Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Influence of corrosion		IEC 60654-4		Class I				
Vibrations IEC 60255-21-1 Class I Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Mechanical								
Shocks and bumps IEC 60255-21-2 Class I Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Degree of protection		IEC 60529		IP 41	On	front		
Earthquakes IEC 60255-21-3 Class I Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Vibrations		IEC 60255-21-1		Class I				
Fire IEC 60695-2-1 Glow wire Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Shocks and bumps		IEC 60255-21-2		Class I				
Electrical insulation Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Earthquakes		IEC 60255-21-3		Class I				
Power frequency IEC 60255-5 2 kV - 1 mn 1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Fire		IEC 60695-2-1			Glo	ow wire		
1.2/ 50 μs impulse wave IEC 60255-5 5 kV Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Electrical insulatio	n							
Electromagnetic compatibility Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Power frequency		IEC 60255-5			2 k	V - 1 mn		
Immunity to radiation IEC 60255-22-3 Class X 30 V/m Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	1.2/ 50 μs impulse wave	9	IEC 60255-5			5 k	:V		
Electrostatic sicharges IEC 60255-22-2 Class III Single-direction transients IEC 61000-4-5	Electromagnetic co	ompatibility							
Single-direction transients IEC 61000-4-5	Immunity to radiation		IEC 60255-22-3		Class X	30	V/m		
	Electrostatic sicharges		IEC 60255-22-2		Class III				
Description 4 AMI 1997 199	Single-direction transier	nts	IEC 61000-4-5						
Damped I MITZ wave IEC 60/255-22-1 Class III	Damped 1 MHz wave		IEC 60255-22-1		Class III				
5 ns fast transients IEC 60255-22-4 Class IV	5 ns fast transients		IEC 60255-22-4		Class IV				

Note: "CE" marking on our product guarantees their conformity to European directives.

Dimensions

Presentation

Front of Sepam 100MI-X03.

Device open.

Circuit breaker.

Function

The Sepam 100MI range includes 14 indication and local control modules:

- designed for control cubicles or cabinets
- which may be used individually or together with Sepam 2000 and Sepam series 20/40/80 units.

Each module is suited to a particular indication and local control application.

The right unit is chosen from the 14 types of Sepam 100MI according to:

- cubicle single-line diagram
- devices whose positions are to be indicated
- required local control functions.

The 14 types of Sepam 100MI are presented in detail in the pages which follow.

Advantages

- includes all the animated mimic elements for viewing breaking and disconnection device status
- compact size and easy installation
- reduced cabling
- standardization and consistency with Sepam range.

Description

The front of Sepam 100MI includes the following, according to type:

- a mimic diagram showing the cubicle single-line diagram, with devices symbolized
- red and green signal lamp blocks to indicate the position of each device:

□ red vertical bar showing device closed

□ green horizontal bar showing device open

- local or remote control selector switch with lock
- circuit breaker open control pushbutton (KD2), active in local or remote mode
- circuit breaker close control pushbutton (KD1), active in local mode only
- 2 circuit breaker connect (KS1) and disconnect (KS2) control pushbuttons, active in local or remote mode.

There is a 21-pin connector on the back of Sepam 100MI for the connection of:

- supply voltage
- device position indication inputs
- circuit breaker control (open/close and disconnect) outputs.

Sepam 100MI operates with 2 power supply ranges (to be indicated in order):

- 24/30 V AC/DC
- 48/127 V AC/DC.

Note: In the Sepam 100MI mimics on the pages which follow, the position indicators of each device are identified as follows:

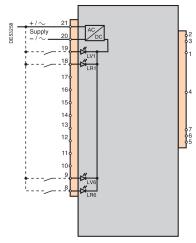
- LVi: green indicator showing device number "i " in open position.
- LRI: red indicator showing device number "i" in closed position.

These markings do no appear on the front of the device.

Block and connection diagrams

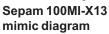
Sepam 100MI-X00 and Sepam 100MI-X17

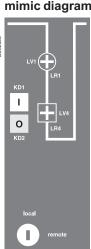
Sepam 100MI-X00 mimic diagram

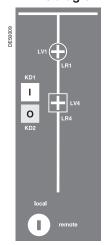


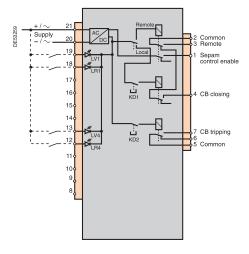
Sepam 100MI-X17 mimic diagram

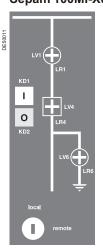
Connection

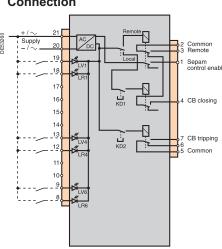





Sepam 100MI-X01 and Sepam 100MI-X13

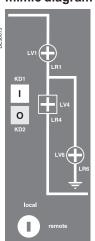

Sepam 100MI-X01 mimic diagram

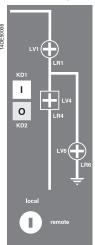

Connection

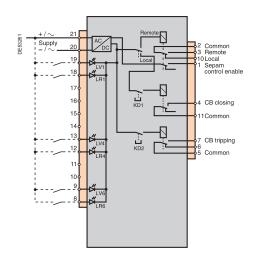


Sepam 100MI-X02 Sepam 100MI-X02 mimic diagram

Connection

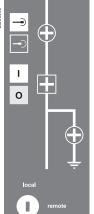

Block and connection diagrams

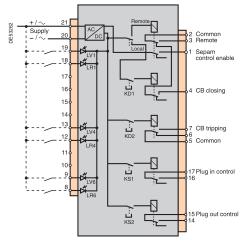

Sepam 100MI-X16 and Sepam 100MI-X18


Sepam 100MI-X16 mimic diagram

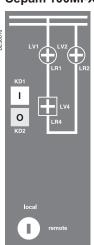
Sepam 100MI-X18 mimic diagram

Connection

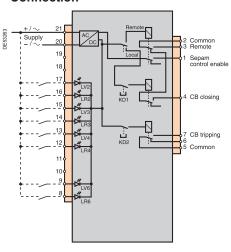



Sepam 100MI-X03

Sepam 100MI-X03 mimic diagram

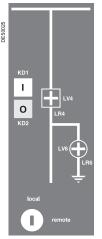


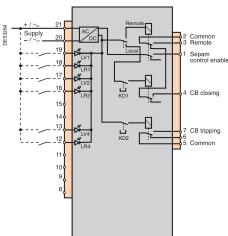
Connection



Sepam 100MI-X22

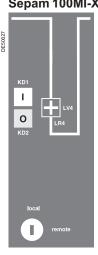
Sepam 100MI-X22 mimic diagram


Connection

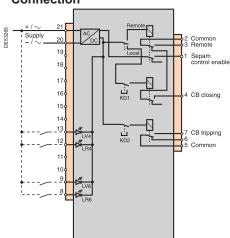

Block and connection diagrams

Sepam 100MI-X14

Sepam 100MI-X14 mimic diagram

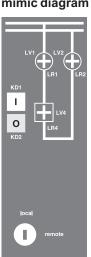


Connection

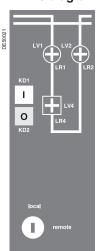


Sepam 100MI-X15

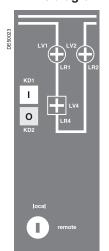
Sepam 100MI-X15 mimic diagram

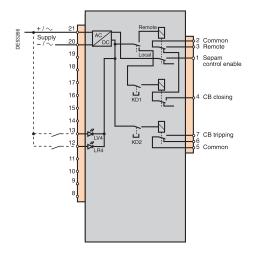


Connection



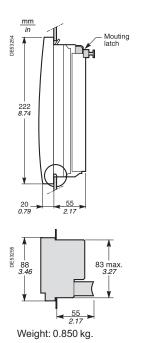
Sepam 100MI-X10, Sepam 100MI-X11 and Sepam 100MI-X12

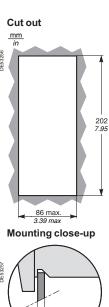

Sepam 100MI-X10 mimic diagram

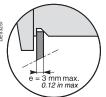


Sepam 100MI-X11 mimic diagram

Sepam 100MI-X12 Connection mimic diagram


Sepam 100 MICharacteristics and dimensions


Logic inputs				
Voltage		24/30 V	48/127 V	
Max. consumption	per input	35 mA	34 mA	
Logic outputs (relays)			
Voltage		24/30 V	48/127 V	
Permissible rated current		8 A		
Breaking capacity	DC resistive load	4 A	0,3 A	
	AC resistive load	8 A	8 A	
Number of on-load	operations	10000	10000	
Power supply				
Auxiliary power source DC or AC current (50 or 60 Hz)		24 to 30 V, -20 % +10 % 48 to 127 V, -20 % +10 %		
Consumption		24 to 30 V: 7.7 VA max. (at 33 V) 48 V: 4 VA		


	110 V: 18 VA		
Environmental characteris	tics		
Climatic			
Operation	IEC 60068-2		-10 °C to +70 °C
Storage	IEC 60068-2		-25 °C to +70 °C
Damp heat	IEC 60068-2		95 % to 40 °C
Mechanical			
Degree of protection	IEC 60529	IP51	Front plate
Vibrations	IEC 60255-21-1	Class I	
Shocks	IEC 60255-21-2	Class I	
Seismic tests	IEC 60255-21-3	Class I	
Fire	NFC 20455	Glow wire 650	°C
Dielectric			
Power frequency	IEC 60255-4 (1)		2 kV - 1 mn
1.2/50 μs impulse wave	IEC 60255-4 (1)		5 kV
Electromagnetic			
Radiation	IEC 60255-22-3	Class X	30 V/m
Electrostatic discharge	IEC 60255-22-2	Class III	
Damped 1 MHz wave	IEC 60255-22-1	Class III	
5 ns fast transients	IEC 60255-22-4	Class IV	

(1) Published in 1978 and amended in 1979. The "CE" marking on our products guarantees their conformity to European directives.

Dimensions

There are 2 types of Sepam communication accessories:

- communication interfaces, which are essential for connecting Sepam to the communication network
- converters and oth er accessories, as options, which are used for complete implementation of the communication network.

Communication-interface selection guide

		ACE949-2	ACE959	ACE937	ACE9	69TP-2	ACE9	69FO-2	ACE850TP	ACE850FO
Type of netwo	ork									
		S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN	E-LAN	S-LAN	E-LAN	S-LAN and E-LAN	S-LAN and E-LAN
Protocol										
Modbus RTU			•	•	(3)		(3)		•	•
DNP3					(3)		(3)			
IEC 60870-5-103					(3)		(3)			
Modbus TCP/IP									(3)	(3)
IEC 61850									(3)	(3)
Physical inte	rface									
RS 485	2-wire	-						•		
	4-wire		•							
Fiber optic ST	Star			•			•			
	Ring						(2)			
10/100 base T	2 ports									
100 base FX	2 ports									•
Power supply	/									
DC		Provided by	Provided by	Provided by	24 to 250	V	24 to 250	V	24 to 250 V	24 to 250 V
AC		Sepam	Sepam	Sepam	110 to 240	O V	110 to 24	O V	110 to 240 V	110 to 240 V
See details		Catalogue page 181	Catalogue page 182	Catalogue page 183	Catalog page 18		Catalog page 18		(4)	(4)

- (1) Only one connection possible, S-LAN or E-LAN. (2) Except with the Modbus protocol.

- (3) Not simultaneously (1 protocol per application).
 (4) Soon available for Sepam series 40 and series 80.

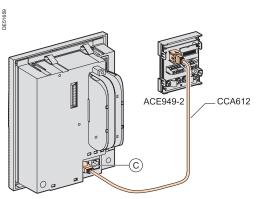
Converter selection guide

	ACE909-2	ACE919CA	ACE919CC	EGX100	EGX400	ECI850
Converter						
Physical interface	1 port RS 232	1 port RS 485 port 2-wire	1 port RS 485 port 2-wire	1 Ethernet port 10/100 base T	2 Ethernet ports 10/100 base T 100 base F	1 Ethernet port 10/100 base T
Modbus RTU	(1)	(1)	■ ⁽¹⁾			
IEC 60870-5-103	(1)	(1)	■ ⁽¹⁾			
DNP3	(1)	(1)	■ ⁽¹⁾			
Modbus TCP/IP					•	
IEC 61850						•
To Sepam						
Physical interface	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire or 4-wire	2 ports RS 485 2-wire or 4-wire	1 port RS 485 2-wire or 4-wire
Distributed power supply RS 485	•	•	•			
Modbus RTU	(1)	(1)	■ ⁽¹⁾	•	•	•
IEC 60870-5-103	(1)	(1)	■ ⁽¹⁾			
DNP3	■ ⁽¹⁾	(1)	■ ⁽¹⁾			
Alimentation			•			
DC			24 to 48 V	24 V	24 V	24 V
AC	110 to 220 V AC	11to à 220 V AC			100 to 240 V AC (with adapter)	
See details	Catalogue page 189	Catalogue page 191	Catalogue page 191	Catalogue page 197	Catalogue page 198	Catalogue page 193

(1) The supervisor protocol is the same as the Sepam protocol.

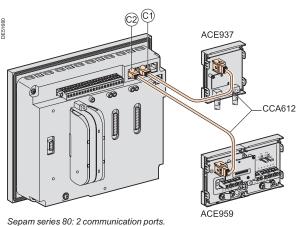
Note: all these interfaces accept the E-LAN protocol.

Communication interface connection


CCA612 connection cord

Plugging into Sepam

Cord used to connect a communication interface to a Sepam base unit:


- Length = 3 m (9.8 ft)
- Fitted with 2 green RJ45 plugs.

Sepam series 20 and Sepam series 40

Sepam series 20 and Sepam series 40: 1 communication port.

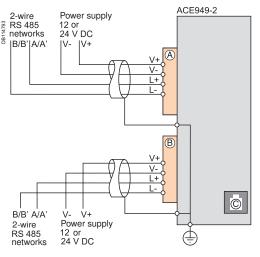
Sepam series 80

Connection to the communication network

2-wire	4-wire	
1 shielded twisted pair	2 shielded twisted pairs	
1 shielded twisted pair 1 shielded twisted pa		
Tinned copper braid, covera	ge > 65 %	
120 Ω		
AWG 24		
< 100 Ω/km (62.1Ω/mi)		
conductors < 60 pF/m (18.3 pF/ft)		
< 100 pF/m (30.5 pF/ft)		
1300 m (4270 ft)		
	1 shielded twisted pair 1 shielded twisted pair Tinned copper braid, covera 120 Ω AWG 24 < 100 Ω /km (62.1 Ω /mi) < 60 pF/m (18.3 pF/ft) < 100 pF/m (30.5 pF/ft)	

(1) Remote power supply not required when ACE969TP-2 or ACE969FO-2 modules are used.

Fiber optic					
Fiber type		Graded-index r	nultimode silica		
Wavelength		820 nm (invisib	le infra-red)		
Type of connector		ST (BFOC baye	onet fiber optic connecto	r)	
Fiber optic diameter (µm)	Numerical aperture (NA)	Maximum attenuation (dBm/km)	Minimum optical power available (dBm)	Maximum fiber length	
50/125	0.2	2.7	5.6	700 m (2300 ft)	
62.5/125	0.275	3.2	9.4	1800 m (5900 ft)	
100/140	0.3	4 14.9 2800 m (9200			
200 (HCS)	0.37	6	19.2	2600 m (8500 ft)	


ACE949-2 2-wire RS 485 network interface

Schneider Schneider Contact Sc

ACE949-2 2-wire RS 485 network connection interface

A C B 1 2 888 3.46 3.46 3.46 2.83

(1) 70 mm (2.8 in) with CCA612 cord connected.

Function

The ACE949-2 interface performs 2 functions:

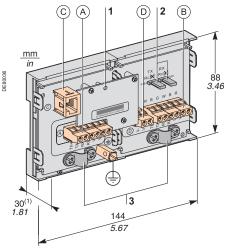
- Electrical interface between Sepam and a 2-wire RS 485 communication network
- Main network cable branching box for the connection of a Sepam with a CCA612 cord.

Characteristics

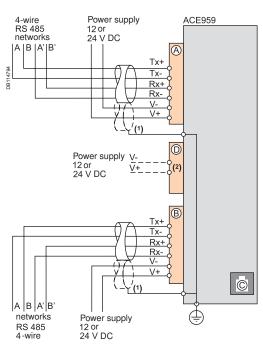
ACE949-2 module			
Weight	0.1 kg (0.22 lb)		
Assembly	On symmetrical DIN rail		
Operating temperature	-25°C to +70°C (-13°F to +158°F)		
Environmental characteristics	Same characteristics as Sepam base units		
2-wire RS 485 electrical	interface		
Standard	EIA 2-wire RS 485 differential		
Distributed power supply	External, 12 V DC or 24 V DC ±10%		
Power consumption	16 mA in receiving mode		
	40 mA maximum in sending mode		

Maximum length of 2-wire RS 485 network with standard cable						
Number of Maximum length with Sepam units Maximum length with 24 V DC power supply						
5	320 m (1000 ft)	1000 m (3300 ft)				
10	180 m (590 ft)	750 m (2500 ft)				
20	160 m (520 ft)	450 m (1500 ft)				
25	125 m (410 ft)	375 m (1200 ft)				

Description and dimensions


- (A) and (B) Terminal blocks for network cable
- C RJ45 socket to connect the interface to the base unit with a CCA612 cord
- Grounding/earthing terminal
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
- 2 Jumper for RS 485 network line-end impedance matching with load resistor (Rc = 150 Ω), to be set to:
 - 🖟, if the module is not at one end of the network (default position)
 - Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection


- Connection of network cable to screw-type terminal blocks (A) and (B)
- Connection of the earthing terminal by tinned copper braid with cross-section \geq 6 mm² (AWG 10) or cable with cross-section \geq 2.5 mm² (AWG 12) and length \leq 200 mm (7.9 in), fitted with a 4 mm (0.16 in) ring lug. Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).
- The interfaces are fitted with clamps to hold the network cable and recover shielding at the incoming and outgoing points of the network cable:
- □ the network cable must be stripped
- ☐ the cable shielding braid must be around and in contact with the clamp
- The interface is to be connected to connector © on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings)
- The interfaces are to be supplied with 12 V DC or 24 V DC.

ACE959 4-wire RS 485 network interface

Schneider
ACE959 4-wire RS 485 network connection interface.

(1) 70 mm (2.8 in) with CCA612 cord connected.

(1) Distributed power supply with separate wiring or included in the shielded cable (3 pairs).

(2) Terminal block for connection of the distributed power supply module.

Function

The ACE959 interface performs 2 functions:

- Electrical interface between Sepam and a 4-wire RS 485 communication network
- Main network cable branching box for the connection of a Sepam with a CCA612 cord.

Characteristics

ACE959 module			
Weight	0.2 kg (0.441 lb)		
Assembly	On symmetrical DIN rail		
Operating temperature	-25°C to +70°C (-13°F to +158°F)		
Environmental characteristics	Same characteristics as Sepam base units		
4-wire RS 485 electrical	interface		
Standard	EIA 4-wire RS 485 differential		
Distributed power supply	External, 12 V DC or 24 V DC ±10%		
Power consumption	16 mA in receiving mode		
	40 mA maximum in sending mode		
Maximum langth of 4-wi	iro DS 185 notwork		

with standard cable							
Number of Maximum length with Sepam units Maximum length with 24 V DC power supply 24 V DC power supply							
5	320 m (1000 ft)	1000 m (3300 ft)					
10	180 m (590 ft)	750 m (2500 ft)					
20	160 m (520 ft)	450 m (1500 ft)					
25	125 m (410 ft)	375 m (1200 ft)					

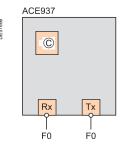
Description and dimensions

- (A) and (B) Terminal blocks for network cable
- C) RJ45 socket to connect the interface to the base unit with a CCA612 cord
- (D) Terminal block for a separate auxiliary power supply (12 V DC or 24 V DC)
- Grounding/earthing terminal
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress)
- 2 Jumper for 4-wire RS 485 network line-end impedance matching with load resistor (Rc = 150 Ω), to be set to:
 - 🖟, if the module is not at one end of the network (default position)
 - Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection

- Connection of network cable to screw-type terminal blocks (A) and (B)
- Connection of the earthing terminal by tinned copper braid with cross-section ≥ 6 mm² (AWG 10) or cable with cross-section ≥ 2.5 mm² (AWG 12) and length ≤ 200 mm (7.9 in), fitted with a 4 mm (0.16 in) ring lug. Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).
- The interfaces are fitted with clamps to hold the network cable and recover shielding at the incoming and outgoing points of the network cable:
- □ the network cable must be stripped
- $\hfill \square$ the cable shielding braid must be around and in contact with the clamp
- The interface is to be connected to connector © on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings)
- The interfaces are to be supplied with 12 V DC or 24 V DC
- The ACE959 can be connected to a separate distributed power supply (not included in shielded cable). Terminal block ① is used to connect the distributed power supply module.

ACE937 fiber optic connection interface.


CAUTION

HAZARD OF BLINDING

Never look directly into the end of the fiber optic. Failure to follow this instruction can cause

mm 30(1 1 81 2.83

(1) 70 mm (2.8 in) with CCA612 cord connected.

Function

The ACE937 interface is used to connect Sepam to a fiber optic communication star

This remote module is connected to the Sepam base unit by a CCA612 cord.

Characteristics

ACE937 module					
Weight		0.1 kg (0.22 lb)		
Assembly		On symmetric	al DIN rail		
Power supply		Supplied by Se	epam		
Operating tempera	ature	-25°C to +70°0	C (-13°F to +158°F)		
Environmental cha	racteristics	Same characte	eristics as Sepam base un	its	
Fiber optic interface					
Fiber type		Graded-index multimode silica			
Wavelength		820 nm (invisible infra-red)			
Type of connector		ST (BFOC bayonet fiber optic connector)			
Fiber optic diameter (µm)	Numerical aperture (NA)	Maximum dinimum optical ttenuation (dBm/km) (dBm) Maximum fiber length			
50/125	0.2	2.7	700 m (2300 ft)		
62.5/125	0.275	3.2 9.4 1800 m (5900 ft			
100/140	0.3	4	14.9	2800 m (9200 ft)	
200 (HCS)	0.37	6	19.2	2600 m (8500 ft)	

Maximum length calculated with:

- Minimum optical power available
- Maximum fiber attenuation
- Losses in 2 ST connectors: 0.6 dBm
- Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi)

Description and dimensions

- (C) RJ45 socket to connect the interface to the base unit with a CCA612 cord.
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
- Rx, female ST type connector (Sepam receiving).
- 3 Tx, female ST type connector (Sepam sending).

Connection

- The sending and receiving fiber optic fibers must be equipped with male ST type
- Fiber optics screw-locked to Rx and Tx connectors.

The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings).

ACE969TP-2 and ACE969FO-2 network interfaces

ACE969TP-2 communication interface.

ACE969FO-2 communication interface.

Function

The ACE969 multi-protocol communication interfaces are for Sepam series 20, Sepam series 40 and Sepam series 80.

They have two communication ports to connect a Sepam to two independent communication networks:

- The S-LAN (Supervisory Local Area Network) port is used to connect Sepam to a communication network dedicated to supervision, using one of the three following
- □ IEC 60870-5-103
- □ DNP3
- □ Modbus RTU.

The communication protocol is selected at the time of Sepam parameter setting.

■ The E-LAN (Engineering Local Area Network) port, reserved for Sepam remote parameter setting and operation using the SFT2841 software.

There are two versions of the ACE969 interfaces, which are identical except for the S-LAN port:

- ACE969TP-2 (Twisted Pair), for connection to an S-LAN network using a 2-wire RS 485 serial link
- ACE969FO-2 (Fiber Optic), for connection to an S-LAN network using a fiber-optic connection (star or ring).

The E-LAN port is always a 2-wire RS485 type port.

2600 m (8500 ft)

ACE969TP-2 and ACE969FO-2 network interfaces

Characteristics

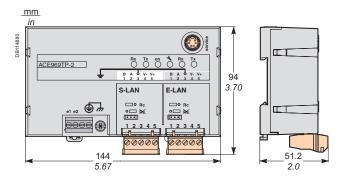
ACE969TP-2 and ACE969FO-2 module						
Technical char	acteristics					
Weight		0.285 kg (0.628 lb)			
Assembly		On symmetrical D	IN rail			
Operating temperat	ture	-25°C to +70°C (-1	13°F to +158	В°F)		
Environmental char	acteristics	Same characteris	tics as Sepa	ım base	units	
Power supply						
Voltage		24 to 250 V DC		110 to 24	10 V AC	
Range		-20%/+10%	-	-20%/+1	0%	
Maximum consump	tion	2 W		3 VA		
Inrush current		< 10 A 100 μs				
Acceptable ripple c	ontent	12%				
Acceptable momen	tary outages	20 ms				
2-wire RS 485 communication ports						
Electrical inter	face					
Standard		EIA 2-wire RS 485	differential			
Distributed power s	upply	ACE969-2 not required (built-in)				
Fiber optic	communicati	on port				
Fiber optic inte	rface					
Fiber type		Graded-index mul	timode silic	а		
Wavelength		820 nm (invisible infra-red)				
Type of connector		ST (BFOC bayonet fiber optic connector)				
Maximum leng	th of fiber optic	network				
Fiber diameter (μm)	Numerical aperture (NA)	Attenuation (dBm/km)	Minimum optical po available (dBm)		Maximum fiber length	
50/125	0.2	2.7	5.6		700 m (2300 ft)	
62.5/125	0.275	3.2	9.4		1800 m (5900 ft)	
100/140	0.3	4	14.9		2800 m (9200 ft)	

19.2

Maximum length calculated with:

- Minimum optical power available
- Maximum fiber attenuation
- Losses in 2 ST connectors: 0.6 dBm

0.37

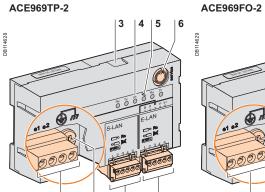

■ Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi).

Dimensions

200 (HCS)


ACE969TP-2 and ACE969FO-2 network interfaces

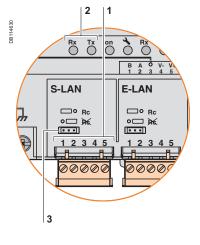
Description

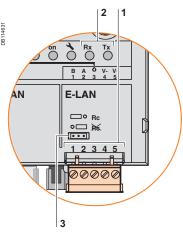
1 Grounding/earthing terminal using supplied braid

- 2 Power-supply terminal block
- 3 RJ45 connector to connect the interface to the base unit with a CCA612 cord
- 4 Green LED: ACE969-2 energized
- 5 Red LED: ACE969-2 interface status
 - LED off = ACE969-2 set up and communication operational
 - LED flashing = ACE969-2 not set up or setup incorrect
 - LED remains on = ACE969-2 has faulted
- 6 Service connector: reserved for software upgrades
- 7 E-LAN 2-wire RS485 communication port (ACE969TP-2 and ACE969FO-2)
- 8 S-LAN 2-wire RS485 communication port (ACE969TP-2)
- 9 S-LAN fiber-optic communication port (ACE969FO-2).
- 1 Draw-out terminal block, with two rows of connections to the RS485 2-wire network:
 - 2 black terminals: connection of RS485 twistedpair (2 wires)
 - 2 green terminals: connection of twisted-pair for distributed power supply
- 2 Indication LEDs:
 - flashing Tx LED: Sepam sending
 - flashing Rx LED: Sepam receiving.
- 3 Jumper for RS485 network line-end impedance matching with load resistor (Rc = 150 Ω), to be set
 - Rc, if the interface is not at the line end (default
 - Rc, if the interface is at the line end.

ACE969-2 communication interfaces

2-wire RS485 communication ports

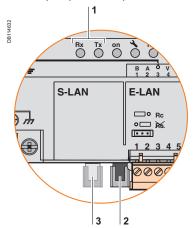

S-LAN port (ACE969TP)


2

E-LAN port (ACE969TP or ACE969FO)

2

|5



1 Indication LEDs:

- flashing Tx LED: Sepam sending
- flashing Rx LED: Sepam receiving.
- 2 Rx, female ST-type connector (Sepam receiving)
- 3 Tx, female ST-type connector (Sepam sending).

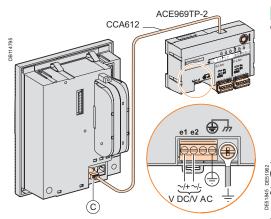
Fiber-optic communication port

S-LAN port (ACE969FO)

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

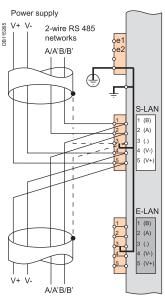
Power supply and Sepam

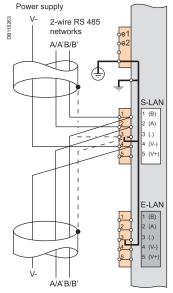

- The ACE969-2 interface connects to connector C on the Sepam base unit using a CCA612 cord (length = 3 m or 9.84 ft, white RJ45 fittings)
- The ACE969-2 interface must be supplied with 24 to 250 V DC or 110 to 240 V AC.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.

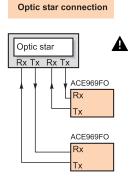

Failure to follow these instructions will result in death or serious injury.


Terminals	Type	Wiring
e1-e2 - supply	Screw terminals	■ Wiring with no fittings: ☐ 1 wire with maximum cross-section 0.2 to 2.5 mm² (≥ AWG 24-12) or 2 wires with maximum cross-section 0.2 to 1 mm² (≥ AWG 24-18) ☐ stripped length: 8 to 10 mm (0.31 to 0.39 in) ■ Wiring with fittings: ☐ recommended wiring with Telemecanique fitting: ☐ DZ5CE015D for 1 wire 1.5 mm² (AWG 16) ☐ DZ5CE025D for 1 wire 2.5 mm² (AWG 12) ←AZ5DE010D for 2 wires 1 mm² (AWG 18) ☐ tube length: 8.2 mm (0.32 in) ☐ stripped length: 8 mm (0.31 in).
Protective earth	Screw terminal	1 green/yellow wire, max. length 3 m (9.8 ft) and max. cross-section 2.5 mm² (AWG 12)
Functional earth	4 mm (0.16 in) ring lug	Earthing braid, supplied for connection to cubicle grounding

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

If ACE969TP and ACE969TP-2 are used together, the external power supply is required.



If ACE969TP-2 is used alone, the external power supply is not required, the V- connectors on the modules must be interconnected

2-wire RS 485 communication ports (S-LAN or E-LAN)

- Connection of the RS 485 twisted pair (S-LAN or E-LAN) to terminals A and B.
- In case of ACE 969TP wired with ACE969TP-2:
- \Box connection of twisted pair for distributed power supply to terminals 5(V+) et 4(V-).
- In case of ACE969TP-2 only:
- □ connexion only on the terminal 4(V-) (ground continuity)
- □ no need of external power supply.
- The cable shields must be connected to the terminals marked 3(.) on the connection terminal blocks.
- Terminal marked 3(.) are linked by an internal connection to the earthing terminals of the ACETP-2 interface (protective an functional earthing): le the shielding of the RS 485 cables is earthed as well.
- On the ACE960TP-2 interface, the cable clamps for the S-LAN and E-LAN RS 485 networks are earthed by the terminal 3.

Ring connection Hub Rx Rx

Fiber optic communication port (S-LAN)

CAUTION

HAZARD OF BLINDING

Never look directly into the fiber optic.

Failure to follow this instruction can cause serious injury.

The fiber optic connection can be made:

- point-to-point to an optic star system
- in a ring system (active echo).

The sending and receiving fiber optic fibers must be equipped with male ST type

The fiber optics are screw-locked to Rx and Tx connectors.

ACE969FO

ACE909-2 RS 232 / RS 485 converter

ACE909-2 RS 232/RS 485 converter.

Function

The ACE909-2 converter is used to connect a master/central computer equipped with a V24/RS 232 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

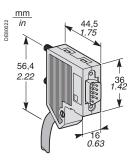
Without requiring any flow control signals, after the parameters are set, the ACE909-2 converter performs conversion, network polarization and automatic dispatching of frames between the master and the stations by two-way simplex (half-duplex, single-pair) transmission.

The ACE909-2 converter also provides a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces. The communication settings should be the same as the Sepam and supervisor communication settings.

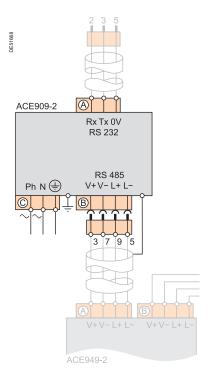
A DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.


Failure to follow these instructions will result in death or serious injury.

Characteristics


Mechanical characteristics			
Weight	0.280 kg (0.617 lb)		
Assembly	On symmetrical of	or asymmetrical DIN rail	
Electrical characteristics			
Power supply	110 to 220 V AC :	± 10%, 47 to 63 Hz	
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply	2000 Vrms, 50 H	z, 1 min	
Galvanic isolation between RS 232 and RS 485 interfaces	1000 Vrms, 50 H	z, 1 min	
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating		
Communication and Sepam int	erface distri	buted supply	
Data format	11 bits: 1 start, 8	data, 1 parity, 1 stop	
Transmission delay	< 100 ns		
Distributed power supply for Sepam interfaces	12 V DC or 24 V I	OC .	
Maximum number of Sepam interfaces with distributed supply	12		
Environmental characteristics			
Operating temperature	-5°C to +55°C (+2	23°F to +131°F)	
Electromagnetic compatibility	IEC	Value	
	standard		
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode	
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode	
1.2/50 μs impulse waves	60255-5	3 kV common mode 1 kV differential mode	
	•		

ACE909-2 RS 232 / RS 485 converter

mm(B) 0 5 (c) 105 2.56

Male 9-pin sub-D connector supplied with the ACE909-2.

Description and dimensions

- (A) Terminal block for RS 232 link limited to 10 m (33 ft).
- (B) Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.
 - 1 screw-type male 9-pin sub-D connector is supplied with the converter.
- (C) Power-supply terminal block
- Distributed power supply voltage selector switch, 12 V DC or 24 V DC.
- Protection fuse, unlocked by a 1/4 turn.
- LEDs:
 - ON/OFF: on if ACE909-2 is energized
 - Tx: on if RS 232 sending by ACE909-2 is active
 - Rx: on if RS 232 receiving by ACE909-2 is active.
- SW1, parameter setting of 2-wire RS 485 network polarization and line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150 Ω resistor			ON

SW2, parameter setting of asynchronous data transmission rate and format (same parameters as for RS 232 link and 2-wire RS 485 network).

(same parameters as for the	ZOZ III IK GITG	Z WIICIK	700 HOLW	onk).	
Rate (bauds)	SW2/1	SW2/2	SW2/3		
1200	1	1	1		
2400	0	1	1		
4800	1	0	1		
9600	0	0	1		
19200	1	1	0		
38400	0	1	0		
Format				SW2/4	SW2/5
With parity check				0	
Without parity check				1	
1 stop bit (compulsory for Sepam)					0

Converter configuration when delivered

- 12 V DC distributed power supply
- 11-bit format, with parity check
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

RS 232 link

2 stop bits

- To 2.5 mm² (AWG 12) screw type terminal block (A)
- Maximum length 10 m (33 ft)
- Rx/Tx: RS 232 receiving/sending by ACE909-2
- 0V: Rx/Tx common, do not earth.

2-wire RS 485 link with distributed power supply

- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

- To 2.5 mm² (AWG 12) screw type terminal block (C)
- Reversible phase and neutral
- Earthed via terminal block and metal case (ring lug on back of case).

ACE919CA and ACE919CC RS 485 / RS 485 converters

ACE919CC RS 485/RS 485 converter.

Function

The ACE919 converters are used to connect a master/central computer equipped with an RS 485 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

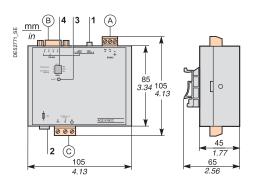
Without requiring any flow control signals, the ACE919 converters perform network polarization and impedance matching.

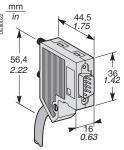
The ACE919 converters also provide a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces. There are 2 types of ACE919 converter:

- ACE919CC, DC-powered
- ACE919CA, AC-powered.

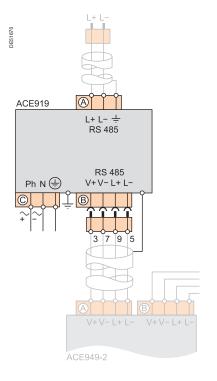
Characteristics

Mechanical characteristics					
Weight	0.280 kg (0.617 lb)				
Assembly	On symmetrical or asymmetrical DIN rai				
Electrical characteristics	ACE919CA	ACE919CC			
Power supply	110 to 220 V AC ±10%, 47 to 63 Hz	24 to 48 V DC ±20%			
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating	1 A rating			
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply		2000 Vrms, 50 Hz, 1 min			
Communication and Sepam int	erface distribut	ed supply			
Data format	11 bits: 1 start, 8 data,	1 parity, 1 stop			
Transmission delay	< 100 ns				
Distributed power supply for Sepam interfaces	12 V DC or 24 V DC				
Maximum number of Sepam interfaces with distributed supply					
Environmental characteristics					
Operating temperature	-5°C to +55°C (+23°F to +131°F)				
Electromagnetic compatibility	IEC standard	Value			
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode			
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode			
1.2/50 µs impulse waves	60255-5	3 kV common mode 1 kV differential mode			


▲ DANGER


HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.


Failure to follow these instructions will result in death or serious injury.

ACE919CA and ACE919CC RS 485 / RS 485 converters

Male 9-pin sub-D connector supplied with the ACE919.

Description and dimensions

- (A) Terminal block for 2-wire RS 485 link without distributed power supply.
- (B) Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.
 - 1 screw-type male 9-pin sub-D connector is supplied with the converter.
- (C) Power supply terminal block.
- Distributed power supply voltage selector switch, 12 V DC or 24 V DC.
- Protection fuse, unlocked by a 1/4 turn.
- ON/OFF LED: on if ACE919 is energized.
- SW1, parameter setting of 2-wire RS 485 network polarization and line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150 Ω resistor			ON

Converter configuration when delivered

- 12 V DC distributed power supply
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

2-wire RS 485 link without distributed power supply

- To 2.5 mm² (AWG 12) screw type terminal block (A)
- L+, L-: 2-wire RS 485 signals

2-wire RS 485 link with distributed power supply

- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

Power supply

- To 2.5 mm² (AWG 12) screw type terminal block (C)
- Reversible phase and neutral (ACE919CA)
- Earthed via terminal block and metal case (ring lug on back of case).

Sepam IEC 61850 level 1 server ECI850MG

Sepam ECI850 server for IEC 61850.

Function

The ECI850 connects Sepam series 20, Sepam series 40 and Sepam series 80 units to an Ethernet network using the IEC 61850 protocol.

It acts as the interface between the Ethernet/IEC 61850 network and a Sepam RS485/Modbus network.

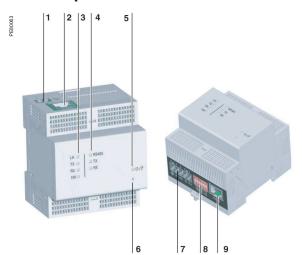
Two PRI surge arresters (cat. no. 16595) are supplied with the ECI850 to protect its power supply.

Characteristics

ECI850 module					
Technical characteristics					
Weight	0.17 kg (0,37 lb)				
Assembly	On symmetrical DIN rail				
Power supply					
Voltage	24 V DC (±10 %) supplied by a class 2 supply				
Maximum consumption	4 W				
Dielectric strength	1.5 kV				
Environmental characteristics					
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)				
Storage temperature	-40 °C to +85 °C (-40 °F to +185 °F)				
Relative humidity	5 to 95 % (without condensation) at +55 °C (131 °F)				
Pollution degree	Class 2				
Degree of protection	IP30				
Electromagnetic comp	atibility				
Emission tests					
Emission (radiated and conducted)	EN 55022/EN 55011/FCC Class A				
Immunity tests - Radiated dis	sturbances				
Electrostatic discharge	EN 61000-4-2				
Radiated radio-frequency fields	EN 61000-4-3				
Magnetic fields at power frequency	EN 61000-4-8				
Immunity tests - Conducted	disturbances				
Fast transient bursts	EN 61000-4-4				
Surges	EN 61000-4-5				
Conducted disturbances, induced by radio-frequency fields	EN 61000-4-6				
Safety					
International	IEC 60950				
United States	UL 508/UL 60950				
Canada	cUL (in compliance with CSA C22.2, no. 60950)				
Australia / New Zealand	AS/NZS 60950				
Certification					
Europe	C€				
2-wire/4-wire RS485 co	mmunication ports				
Electrical interface					
Standard	EIA 2-wire/4-wire RS485 differential				
Max. number of Sepam units	8				
Maximum length of 2-wire/4-	wire RS485 network				
Number of Sepam units	Maximum length				
5	1000 m (3300 ft)				
8	750 m (2500 ft)				
Ethernet communication	· ·				
Number of ports	1				
Type of port	10/100 Base Tx				
Protocols	HTTP, FTP, SNMP, SNTP, ARP, SFT, IEC 61850 TCP/IP				
Transmission rate	Transmission rate 10/100 Mbits/s				

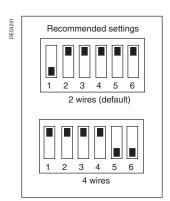
Compatibility

An ECI850 module can be used on the following Sepam base units, starting from indicated versions:


- base S20: V0526
- base S40: V3.0
- base S80: V3.0

Sepam ECI850 server for IEC 61850

Characteristics (cont.)


()))				
PRI surge arrester				
12 to 48 V				
10 kA (8/20 µs wave)				
5 kA (8/20 μs wave)				
70 V				
< 25 ms				
Normal operation				
Arrester must be replaced				
Wires with maximum cross-section of 0.5 to 2.5 mm² (AWG 24-12)				

Description

1 1 / LED: Power on and maintenance

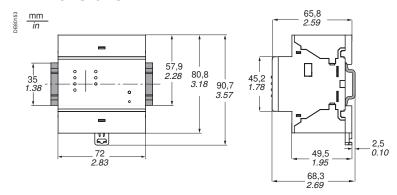
- 2 Serial-link LEDs:
 - RS485 LED: link to network activated
 - □ On: RS485 mode
 - □ Off: RS232 mode
 - flashing TX LED: ECI850 sending
 - flashing RX LED: ECI850 receiving
- 3 Ethernet LEDs:
 - green LK LED on: link to network activated
 - flashing green Tx LED: ECI850 sending
 - flashing green Rx LED: ECI850 receiving
 - green 100 LED:
 - ☐ On: transmission rate = 100 Mbit/s
 - ☐ Off: transmission rate = 10 Mbit/s
- 4 10/100 Base Tx port for Ethernet connection via RJ45 connector
- 5 24 V DC connection
- 6 Reset button
- 7 RS485 connector
- 8 RS485 setup switches
- 9 RS232 connector

RS485 network setup.

RS485 network setup

The RS485 setup switches are used to select the network-polarisation (bias) and line-impedance matching resistors and the type of RS485 network (2-wire/4-wire). The default settings are for a 2-wire RS485 with network-polarization and line-impedance matching resistors.

Line impedance metabing CMA CMA CMA CMA CME


using resistors	SW1	SW2	SW3	SW4	SW5	SW6
2-wire RS485	OFF	ON				
4-wire RS485	ON	ON				
Polarisation (bias)	SW1	SW2	SW3	SW4	SW5	SW6
at 0 V			ON			
at 5 V				ON		
	•			•		
RS485 network type	SW1	SW2	SW3	SW4	SW5	SW6
2-wire					ON	ON
4-wire					OFF	OFF

Ethernet link set-up

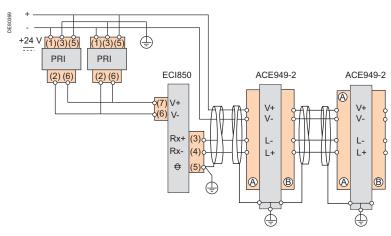
The TCSEAK0100 configuration kit can be used to connect a PC to the ECI850 to set up the Ethernet link.

Sepam ECI850 server for IEC 61850

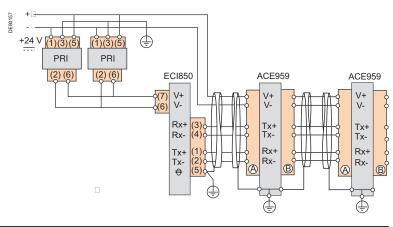
Dimensions

A CAUTION

TO AVOID DAMAGING THE ECI850

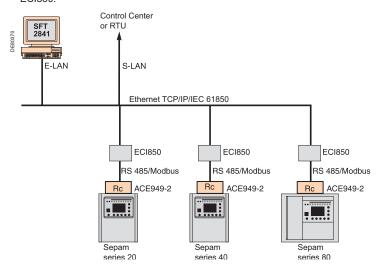

- Connect the two PRI surge arresters as indicated in the diagrams below.
- Check the quality of the earthing conductors connected to the surge arresters.

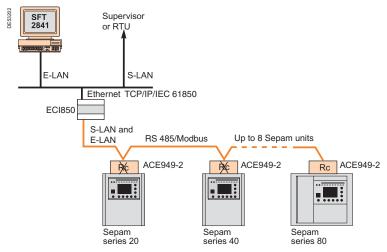
The equipment may be damaged if these instructions are not followed.


Connection

- Connect the supply and the RS485 twisted pair using the \leq 2.5 mm² cable (\geq AWG 12).
- Connect the 24 V DC supply and earth to inputs 1, 5 and 3 on the PRI surge arresters supplied with the ECI850.
- Connect outputs 2 and 6 of PRI surge arresters (cat. no. 16595) to the and + terminals on the terminal block with black screws.
- Connect the RS485 twisted pair (2 or 4 wires) to the terminals (RX+ RX- or RX+ RX- TX+ TX-) on the terminal block with black screws.
- \blacksquare Connect the shielding of the RS485 twisted pair to the $\,\leftrightarrow$ terminal on the terminal block with black screws.
- Connect the Ethernet cable to the green RJ45 connector.

2-wire RS485 network



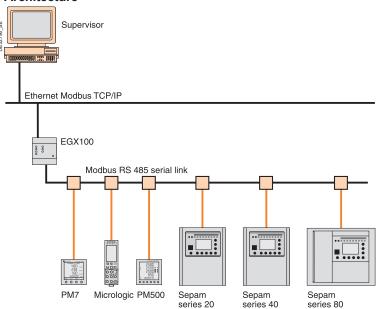

4-wire RS485 network

Sepam ECI850 server for IEC 61850

Architecture exampleThe diagrams below show two examples of communication architectures using the

Note: Rc = line-impedance matching resistor.

Ethernet EGX100 gateway



Function

The EGX100 serves as an Ethernet gateway for PowerLogic® System devices and for any other communicating devices utilizing the Modbus protocol.

The EGX100 gateway offers complete access to status and measurement information provided by the connected devices, for example, via the System Manager™Software (SMS) installed on a PC.

Architecture

Setup

Setup via an Ethernet network

Once connected to an Ethernet network, the EGX100 gateway can be accessed by a standard internet browser via its IP address to:

- specify the IP address, subnet mask, and gateway address of the EGX gateway
- configure the serial port parameters (baud rate, parity, protocol, mode, physical interface, and timeout value)
- create user accounts
- create or update the list of the connected products with their Modbus communication parameters
- configure IP filtering to control access to serial devices
- access Ethernet and serial port diagnostic data
- update the firmware.

Setup via a serial connection

Serial setup is carried out using a PC connected to the EGX100 via an RS232 link. This setup:

- specifies the IP address, subnet mask, and gateway address of the EGX gateway
- specifies the language used for the setup session.

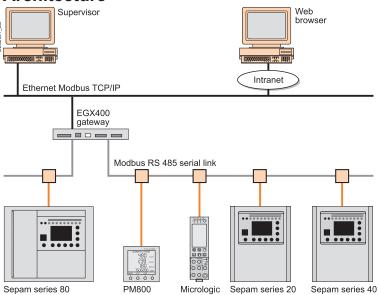
Ethernet EGX400 gateway.

Function

The EGX400 server is used as an Ethernet coupler for Sepam, the PowerLogic devices and for any other communicating devices operating under the Modbus RS 485 protocol.

It contains HTML pages (set up using the WPG software tool) that can be accessed using a standard internet browser. The HTML pages are used to display the information provided by the devices connected to the server.

Supervisor and internet browser


The EGX400 server makes it possible to implement two types of user interface:

- supervision software
- a standard internet browser providing access to the main information organised in predefined HTML pages.

These two approaches, supervisor and internet browser, are complementary:

- the supervisor offers complete access to all information, but requires specific software
- \blacksquare the HTML pages offer partial access to the main information via any PC connected to the network.

Architecture

Setup

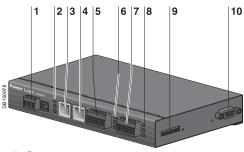
Initial setup

The initial setup is carried out using a PC connected to the EGX400 via an RS232 link. This setup:

- specifies the IP address of the EGX gateway
- selects the type of Ethernet port (wire or optic fiber)
- lists the connected products with their Modbus communication parameters.

Setup via the Ethernet network

Once connected to the Ethernet network, the EGX400 server can be accessed by a standard internet browser via its IP address to:


- create or update the list of the connected products with their Modbus communication parameters
- update the firmware.

Ethernet EGX100 gateway Ethernet EGX400 server

EGX100

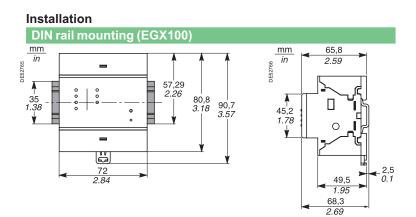
- 24 Vdc power connection.
- 10/100 Base TX (802.3af) port for connection to Ethernet via an RJ45 connector.
- Ethernet and serial indication LEDs.
- Power/Status LED.
- 5 Reset button.
- RS485 connection
- Dip switches for biasing, termination, and 2-wire/4-wire jumpers.
- 8 RS232 connection.

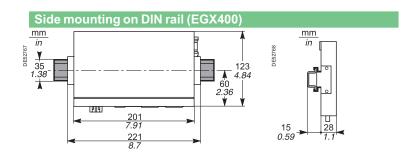
EGX400

- Power connector.
- Ethernet indication LEDs.
- 10/100 Base TX port for connection to Ethernet via an
- RJ45 connector.

 100 Base FX port for connection to Ethernet via fiber optic cable (LC connector).
 COM1: terminal block for RS485 serial link.
- COM1 indication LEDs.
- COM2: terminal block for RS485 serial link.
- COM2 indication LEDs.
- Dip-switches for setup of COM1 and COM2 ports bias and termination.
- 10 COM2: Sub D-9 connector for the RS232 serial link.

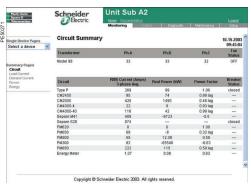
Characteristics

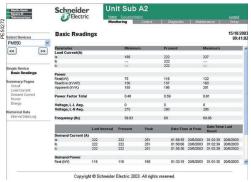

Memory for custom HTML


None

Characteristics		
	EGX100	EGX400
Weight	170 g	700 g
Dimensions (H x W x D)	91 x 72 x 68 mm	25 x 190 x 115 mm
Mounting	Din rail	Symmetrical or asymmetrical DIN rail Front or side position
Power-over-Ethernet (PoE)	Class 3	None
Power supply	24 V DC if not using PoE	24 V DC 100-240 V AC/24 V DC adapter supplied
Operating temperature	-25 °C to +70°C	-30 °C to +80°C
Humidity rating	5 % to 95 % relative humidity (without condensation) at +55 °C	5 % to 95 % relative humidity (without condensation) at +40 °C
Regulatory/standards c	ompliance for electromagn	etic interference
Emissions (radiated and conducted)	EN 55022/EN 55011/ FCC class A	EN 55022/FCC class A
Immunity for industrial environments:	EN 61000-6-2	EN 61000-6-2
- electrostatic discharge - radiated RF - electrical fast transients	EN 61000-4-2 EN 61000-4-3 EN 61000-4-4	EN 61000-4-2 EN 61000-4-3 EN 61000-4-4
- surge	EN 61000-4-5	EN 61000-4-5
conducted RFpower frequency magnetic field	EN 61000-4-6 EN 61000-4-8	EN 61000-4-8 EN 61000-4-11
Regulatory/standards c	ompliance for safety	
International (CB scheme)	IEC 60950	
USA	UL508/UL60950	UL508
Canada	cUL (complies with CSA C22.2, no. 60950)	cUL (complies with CSA C22.2, no. 14-M91)
Europe	EN 60950	
Australia/New Zealand	AS/NZS25 60950	
Serial ports		
Number of ports	1	2
Types of ports	RS232 or RS485 (2-wire or 4- wire), depending on settings	COM1: RS485 (2-wire or 4-wire) COM2: RS232 or RS485 (2-wire or 4-wire), depending on settings
Protocol	Modbus RTU/ASCII PowerLogic® (SY/MAX)	Modbus RTU/ASCII PowerLogic® (SY/MAX)
Maximum baud rate	38400 or 57600 baud depending on settings	38400 baud
Maximum number of directly connected devices	32	32 per port, 64 in all
Ethernet port		
Number of ports	1	2
Types of ports	One 10/100 base TX (802.3af) port	One 10/100 base TX port One 100 base FX port (multimode optic fiber)
Protocol	HTTP, SNMP, FTP, Modbus TCP/IP	HTTP, SNMP, SMTP, SNTP, FTP, Modbus TCP/IP
Baud rate	10/100 MB	10/100 MB
Web server		
		I

16 MB


Ethernet EGX100 gateway Ethernet EGX400 server



WPG software tool HTML page generator

HTML page with summary information on all the equipment in

Single device operating information HTML page.

Single device HTML page showing historical data.

Function

Very easy to use, the WPG software tool generates HTML pages for the EGX400 server. It is used to:

- select the devices connected to the server
- transfer the HTML pages corresponding to the selected devices to the server.

The WPG tool can set up HTML pages for the following devices:

- Sepam series 20, Sepam series 40, Sepam series 80 and Sepam 2000
- Masterpact equipped with Micrologic A, P and H control units
- Power Meter PM500, PM700 and PM800
- Circuit Monitor Series 2000, 3000 and 4000.

The WPG tool is PC software that can be used in three languages, French, Spanish and English.

To obtain WPG, contact your Schneider Electric representative.

HTML pages

Following transfer, the EGX400 contains HTML pages that can be used to remotely monitor equipment under secure conditions.

- 1st service level based on the summary pages.
- 2nd service level based on specific pages for each type of device.

Summary pages

Five summary pages are available for overall monitoring of the switchboard.

They present the main measurements recorded by the devices connected to the server.

- Page 1
- □ 3-phase average rms current
- □ active power
- □ power factor
- □ circuit-breaker position
- Page 2
- □ rms current per phase
- Page 3
- □ demand current per phase
- Page 4
- □ demand power
- □ peak power
- $\hfill\Box$ time-stamping data
- Page 5
- □ active power
- □ reactive power
- $\hfill\Box$ date and time of last reset of energy meters.

Specific pages for each device

A number of specific pages present detailed information on each device for in-depth analysis, e.g.:

- operating information:
- □ instantaneous current per phase
- $\hfill\Box$ demand current per phase
- $\hfill\Box$ active and reactive power
- □ average voltage (phase-to-neutral and phase-to-phase)
- □ maximum unbalance
- □ power factor
- □ frequency
- event information:
- □ minimum and maximum current values
- □ maximum demand current
- □ date and time of last reset
- historical data:
- □ recording over 38 days of three user-selectable parameters (energy by default), every 15, 30 or 60 minutes, with graphic display and data export to an Excel file.

Selection guide

Phase current sensors

Two types of sensor may be used with Sepam to measure phase current:

- 1 A or 5 A current transformers
- LPCT (Low Power Current Transducer) type current sensors.

Selection guide

1 A or 5 A current sensors are:

- to be sized case by case: accuracy, electrical characteristics, etc.
- defined according to the IEC 60044-1 standard.

The LPCT type current sensors are:

- simple to size: a given LPCT sensor is suitable for the measurement of different rated currents: for example, the CLP1 sensor measures rated currents of 25 to 1250 A
- defined according to the IEC 60044-8 standard (rated secondary voltage = 22.5 mV).

Residual current sensors

The residual current value may be obtained using different sensors and assemblies, which are chosen according to the required performance (measurement accuracy and earth fault protection sensitivity).

Residual current may be:

- measured by a specific CSH120 or CSH200 core balance CT
- \blacksquare measured by a core balance CT with a ratio of 1/n (50 \leq n \leq 1500), with an ACE990 adapter.
- calculated by Sepam from the vector sum of the 3 phase currents.

Selection guide

Measurement sensors	Accuracy	Recommended minimum set point	Easy assembly
CSH120 or CSH200 core balance CT	***	>1A	*
1 or 3 x 1 A or 5 A CT+ CSH30	**	0.10 InCT (DT) 0.05 InCT (IDMT)	**
Core balance CT + ACE990	**	0.10 InCT (DT) 0.05 InCT (IDMT)	** revamping * new
3 phase CT (I0 calculated by Sepam)	*	0.30 InCT (DT) ⁽¹⁾ 0.10 InCT (IDMT) ⁽¹⁾	***

(1) Recommended minimum set point for ANSI 50N/51N function with H2 restraint: 0.10 InCT (DT) or 0.05 InCT (IDMT).

It is advisable not to set the earth fault protection functions below the recommended minimum set point to avoid any risk of unwanted tripping caused by oversensitive detection of residual current or false residual current due to the saturation of a CT. Lower settings may be used to trigger alarms.

Voltage transformers

VRQ3 without fuses.

VRQ3 with fuses.

Function

Sepam may be connected to any standard voltage transformer with a rated secondary voltage of 100 V to 220 V.

Schneider Electric offers a range of voltage transformers:

- to measure phase-to-neutral voltages: voltage transformers with one insulated MV terminal
- to measure phase-to-phase voltages: voltage transformers with two insulated MV terminals
- with or without integrated protection fuses.

Consult us for more information.

Connection

The voltage transformers connect to Sepam:

- directly, for Sepam series 40 and Sepam series 80
- or via the CCT640 connector for Sepam B21, B22 and the additional voltage inputs for Sepam B83.

The table below presents the different connection possibilities for voltage transformers to Sepam.

	Sepam B21 and B22	Sepam series 40	Sepam series 80	
Number of voltage inputs	4	3	4 main	4 additional (1)
Intermediate connector	CCT640	-	-	CCT640
Sepam connector	В	E	E	B2

(1) Sepam B83 only.

■ when voltage transformers are connected directly to the E connector on Sepam, four transformers built into the Sepam base unit ensure matching and isolation between the VTs and the Sepam input circuits.

When voltage transformers are connected via the CCT640 connector, the four transformers for matching and isolation between the VTs and the Sepam input circuits are contained in the CCT640.

JA1. ARJP3.

Function

Sepam may be connected to any standard 1 A or 5 A current transformer. Schneider Electric offers a range of current transformers to measure primary currents from 50 A to 2500 A.

Consult us for more information.

Sizing of current transformers

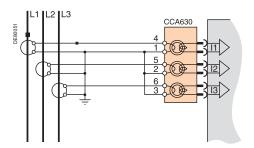
Current transformers are sized so as not to be saturated by the current values they are required to measure accurately (minimum 5 ln).

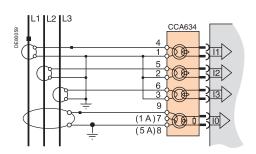
For overcurrent protection functions

■ with DT tripping curve:

the saturation current must be 1.5 times greater than the setting

■ with IDMT tripping curve:


the saturation current must be 1.5 times greater than the highest working value on the curve.


Practical solution when there is no information on the settings

Rated secondary current (in)	Accuracy burden	Accuracy class	CT secondary resistance R _{ct}	Wiring resistance R _r
1 A	2.5 VA	5P 20	<3Ω	< 0.075 Ω
5 A	7.5 VA	5P 20	< 0.2 Ω	< 0.075 Ω

4

1 A / 5 A current transformers

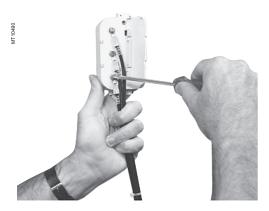
CCA630/CCA634 connector

Function

The current transformers (1 A or 5 A) are connected to the CCA630 or CCA634 connector on the rear panel of Sepam:

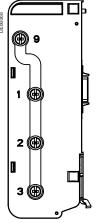
- The CCA630 connector is used to connect 3 phase current transformers to Sepam
- The CCA634 connector is used to connect 3 phase current transformers and a residual current transformer to Sepam.

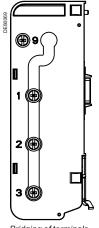
The CCA630 and CCA634 connectors contain interposing ring CTs with through primaries, which ensure impedance matching and isolation between the 1 A or 5 A circuits and Sepam when measuring phase and residual currents.


The connectors can be disconnected with the power on since disconnection does not open the CT secondary circuit.

A DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS


- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- To remove current inputs to the Sepam unit, unplug the CCA630 or CCA634 connector without disconnecting the wires from it. The CCA630 and CCA634 connectors ensure continuity of the current transformer secondary circuits.
- Before disconnecting the wires connected to the CCA630 or CCA634 connector, short-circuit the current transformer secondary circuits.


Failure to follow these instructions will result in death or serious injury.

Connecting and assembling the CCA630 connector

- 1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after
- 2. If necessary, remove the bridging strap linking terminals 1, 2 and 3. This strap is supplied with the CCA630.
- 3. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the 6 screws that guarantee the continuity of the CT secondary circuits.
- The connector accommodates wires with cross-sections of 1.5 to 6 mm² (AWG 16-10).
- 4. Close the side shields.
- 5. Plug the connector into the 9-pin inlet on the rear panel (item (B)).
- 6. Tighten the 2 CCA630 connector fastening screws on the rear panel of Sepam.

Bridging of terminals 1, 2, 3 and 9

Bridaina of terminals

Connecting and assembling the CCA634 connector

- 1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after
- 2. According to the wiring required, remove or reverse the bridging strap. This is used to link either terminals 1, 2 and 3, or terminals 1, 2, 3 and 9 (see picture opposite).
- 3. Use terminal 7 (1 A) or 8 (5 A) to measure the residual current according to the CT secondary.
- 4. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the
- 6 screws that guarantee the continuity of the CT secondary circuits.
- The connector accommodates wires with cross-sections of 1.5 to 6 mm² (AWG 16-10).

The wires only exit from the base.

- 5. Close the side shields
- 6. Insert the connector pins into the slots on the base unit.
- 7. Flatten the connector against the unit to plug it into the 9-pin SUB-D connector (principle similar to that of the MES module).
- 8. Tighten the mounting screw.

A CAUTION

HAZARD OF IMPROPER OPERATION

Sepam series 20, Sepam series 40

■ Do not connect the connector A residual current input I0 (terminals 18 and 19) and the CCA634 residual current input (terminal 9 and 7 or 8) simultaneously.

These 2 residual current input use the same Sepam analog channel.

Sepam series 80

- Do not use a CCA634 on connector B1 and residual current input I0 on connector E (terminals 14 and 15) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B1 will disturb input I0 on connector
- Do not use a CCA634 on connector B2 and residual current input I'0 on connector E (terminals 17 and 18) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B2 will disturb input I'0 on connector E.

Failure to follow this instruction can causeequipment damage.

LPCT type current sensors

CLP1 LPCT sensor

400 & 2000 A 630 & 3150 A Check plug

A CAUTION

HAZARD OF NON-OPERATION

- Set the microswitches for the CCA670/ CCA671 connector before commissioning the device
- Check that only one microswitch is in position 1 for each block L1, L2, L3 and that no microswitch is in the center position.
- Check that the microswitch settings on all 3 blocks are identical.

Failure to follow these instructions can cause incorrect operation.

Function

Low Power Current Transducer (LPCT) type sensors are voltage-output sensors, which are compliant with the IEC 60044-8 standard.

The Schneider Electric range of LPCTs includes the following sensors: CLP1, CLP2, CLP3, TLP160 and TLP190.

CCA670/CCA671 connector

Function

The 3 LPCT sensors are connected to the CCA670 or CCA671 connector on the rear panel of Sepam.

The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The two CCA670 and CCA671 interface connectors serve the same purpose, the difference being the position of the LPCT sensor plugs:

- CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
- CCA671: radial plugs, for Sepam series 80.

Description

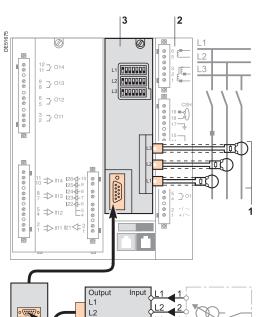
- 1 3 RJ45 plugs to connect the LPCT sensors.
- 2 3 blocks of microswitches to set the CCA670/CCA671 to the rated phase current
- 3 Microswitch setting/selected rated current equivalency table (2 In values per
- 4 9-pin sub-D connector to connect test equipment (ACE917 for direct connector or via CCA613).

Rating of CCA670/CCA671 connectors

The CCA670/CCA671 connector must be rated according to the rated primary current In measured by the LPCT sensors. In is the current value that corresponds to the rated secondary current of 22.5 mV. The possible settings for In are (in A): 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

The selected In value should be:

- entered as a Sepam general setting
- configured by microswitch on the CCA670/CCA671 connector.

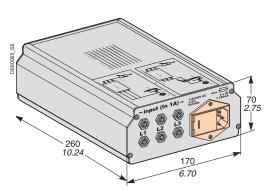

- 1. Use a screwdriver to remove the shield located in the "LPCT settings" zone; the shield protects 3 blocks of 8 microswitches marked L1, L2, L3.
- 2. On the L1 block, set the microswitch for the selected rated current to "1" (2 In values per microswitch)
- The table of equivalencies between the microswitch settings and the selected rated current In is printed on the connector
- Leave the 7 other microswitches set to "0".
- 3. Set the other 2 blocks of switches L2 and L3 to the same position as the L1 block and close the shield.

Accessory connection principle

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power

Failure to follow these instructions will result in death or serious injury.


5

6

- 1 LPCT sensor, equipped with a shielded cable fitted with a yellow RJ 45 plug which is plugged directly into the CCA670/CCA671 connector.
- 2 Sepam protection unit.
- CCA670/CCA671 connector, LPCT voltage interface, with microswitch setting of rated current:
 - CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
 - CCA671: radial plugs, for Sepam series 80.
- 4 CCA613 remote test plug, flush-mounted on the front of the cubicle and equipped with a 3-meter (9.84 ft) cord to be plugged into the test plug of the CCA670/ CCA671 interface connector (9-pin sub-D).
- 5 ACE917 injection adapter, to test the LPCT protection chain with a standard injection box.
- 6 Standard injection box.

LPCT type current sensors

Test accessories

ACE917

A or 5 A

ACE917 injection adapter

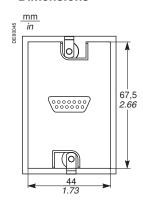
Function

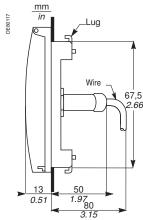
The ACE917 adapter is used to test the protection chain with a standard injection box, when Sepam is connected to LPCT sensors.

The ACE917 adapter is inserted between:

- The standard injection box
- The LPCT test plug:
- □ integrated in the Sepam CCA670/CCA671 interface connector
- □ or transferred by means of the CCA613 accessory.
- The following are supplied with the ACE917 injection adapter:
- Power supply cord
- 3-meter (9.84 ft) cord to connect the ACE917 to the LPCT test plug on CCA670/CCA671 or CCA613.

Characteristics


Power supply	115/230 V AC
Protection by time-delayed fuse 5 mm x 20 mm (0.2 x 0.79 in)	0.25 A rating


CCA613 remote test plug

Function

The CCA613 test plug, flush-mounted on the front of the cubicle, is equipped with a 3-meter (9.84 ft) cord to transfer data from the test plug integrated in the CCA670/CCA671 interface connector on the rear panel of Sepam.

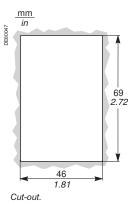
Dimensions

Front view with cover lifted.

Right side view.

A CAUTION

HAZARD OF CUTS


CCA670

Accessory connection principle

Sepam

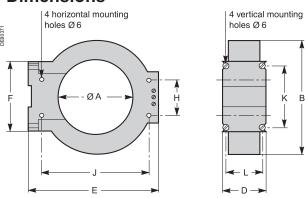
Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

Schneider

CSH120 and CSH200 Core balance CTs

CSH120 and CSH200 core balance CTs.


Function

The specifically designed CSH120 and CSH200 core balance CTs are for direct residual current measurement. The only difference between them is the diameter. Due to their low voltage insulation, they can only be used on cables.

Characteristics

	CSH120	CSH200		
Inner diameter	120 mm (4.7 in)	200 mm (7.9 in)		
Weight	0.6 kg (1.32 lb)	1.4 kg (3.09 lb)		
Accuracy	±5% at 20°C (68°F)			
	±6% max. from -25°0 (-13°F to +158°F)	C to 70°C		
Transformation ratio	1/470			
Maximum permissible current	20 kA - 1 s			
Operating temperature	-25°C to +70°C (-13°F to +158°F)			
Storage temperature	-40°C to +85°C (-40°	F to +185°F)		

Dimensions

Dimensions	Α	В	D	Е	F	Н	J	K	L
CSH120	120	164	44	190	80	40	166	65	35
(in)	(4.75)	(6.46)	(1.73)	(7.48)	(3.14)	(1.57)	(6.54)	(2.56)	(1.38)
CSH200	196	256	46	274	120	60	254	104	37
(in)	(7.72)	(10.1)	(1.81)	(10.8)	(4.72)	(2.36)	(10)	(4.09)	(1.46)

CSH120 and CSH200 Core balance CTs

▲ DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Only CSH120, CSH200 and CSH280 core balance CTs can be used for direct residual current measurement. Other residual current sensors require the use of an intermediate device, CSH30, ACE990 or CCA634.
- Install the core balance CTs on insulated cables.
- Cables with a rated voltage of more than 1000 V must also have an earthed shielding.

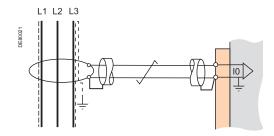
Failure to follow these instructions will result in death or serious injury.

Assembly

Group the MV cable (or cables) in the middle of the core balance CT. Use non-conductive binding to hold the cables.

Remember to insert the 3 medium voltage cable shielding earthing cables through the core balance CT.

Assembly on mounting plate.


A CAUTION

HAZARD OF NON-OPERATION

Do not connect the secondary circuit of the CSH core balance CTs to earth.

This connection is made in Sepam.

Failure to follow this instruction can cause Sepam to operate incorrectly.

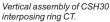
Connection

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding).

Connection to Sepam series 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current l'0 input, on connector (E), terminals 18 and 17 (shielding).

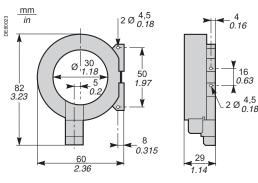

Recommended cable

- Sheathed cable, shielded by tinned copper braid
- Minimum cable cross-section 0.93 mm² (AWG 18)
- Resistance per unit length < 100 mW/m (30.5 mW/ft)
- Minimum dielectric strength: 1000 V (700 Vrms)
- Connect the cable shielding in the shortest manner possible to Sepam
- Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

The maximum resistance of the Sepam connection wiring must not exceed 4 $\,\mathrm{W}$ (i.e. 20 m maximum for 100 mW/m or 66 ft maximum for 30.5 mW/ft).

Horizontal assembly of CSH30 interposing ring CT.


Function

The CSH30 interposing ring CT is used as an interface when the residual current is measured using 1 A or 5 A current transformers.

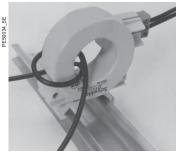
Characteristics

Weight	0.12 kg (0.265 lb)
Assembly	On symmetrical DIN rail
•	In vertical or horizontal position

Dimensions

Connection

The CSH30 is adapted for the type of current transformer, 1 A or 5 A, by the number of turns of the secondary wiring through the CSH30 interposing ring CT:


- 5 A rating 4 turns
- 1 A rating 2 turns

Connection to 5 A secondary circuit

- 1. Plug into the connector.
- 2. Insert the transformer secondary wire through the CSH30 interposing ring CT 4 times.

Connection to 1 A secondary circuit

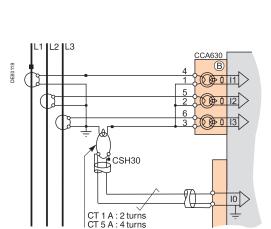
- 1. Plug into the connector.
- 2. Insert the transformer secondary wire through the CSH30 interposing ring CT twice.

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding).

Connection to Sepam series 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding).

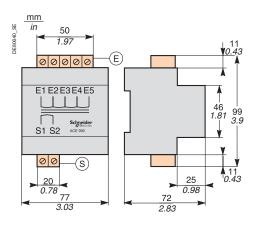

Recommended cable

- Sheathed cable, shielded by tinned copper braid
- Minimum cable cross-section 0.93 mm² (AWG 18) (max. 2.5 mm², AWG 12)
- Resistance per unit length < 100 mW/m (30.5 mW/ft)
 Minimum dielectric strength: 1000 V (700 Vrms)
- Maximum length: 2 m (6.6 ft).

It is essential for the CSH30 interposing ring CT to be installed near Sepam (Sepam - CSH30 link less than 2 m (6.6 ft) long).

Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.



CT 1 A: 2 turns 5 A: 4 turns

ACE990 Core balance CT interface

ACE990 core balance CT interface.

Function

The ACE990 is used to adapt measurements between an MV core balance CT with a ratio of 1/n (50 $\leq n \leq 1500$), and the Sepam residual current input.

Characteristics

Weight	0.64 kg (1.41 lb)
Assembly	Mounted on symmetrical DIN rail
Amplitude accuracy	±1%
Phase accuracy	<2°
Maximum permissible current	20 kA - 1 s (on the primary winding of an MV core balance CT with a ratio of 1/50 that does not saturate)
Operating temperature	-5°C to +55°C (+23°F to +131°F)
Storage temperature	-25°C to +70°C (-13°F to +158°F)

Description and dimensions

- (E) ACE990 input terminal block, for connection of the core balance CT.
- SACE990 output terminal block, for connection of the Sepam residual current.

S2

Connection

Connection of core balance CT

Only one core balance CT can be connected to the ACE990 interface. The secondary circuit of the MV core balance CT is connected to 2 of the 5 ACE990 interface input terminals. To define the 2 input terminals, it is necessary to know the followina:

- Core balance CT ratio (1/n)
- Core balance CT power
- Close approximation of rated current In0

(In0 is a general setting in Sepam and defines the earth fault protection setting range between 0.1 In0 and 15 In0).

The table below can be used to determine:

- The 2 ACE990 input terminals to be connected to the MV core balance CT
- The type of residual current sensor to set
- The exact value of the rated residual current InO setting, given by the following formula: In0 = k x number of core balance CT turns with k the factor defined in the table below

The core balance CT must be connected to the interface in the right direction for correct operation: the MV core balance CT secondary output terminal S1 must be connected to the terminal with the lowest index (Ex).

ACE990 input Min. MV core K value Residual current terminals to be sensor setting balance CT connected power 0.00578 E1 - E5 ACE990 - range 1 0.1 VA ACE990 - range 1 0.00676 E2 - E5 0.1 VA ACE990 - range 1 0.00885 E1 - E4 0.1 VA 0.00909 E3 - E5 ACE990 - range 1 0.1 VA 0.01136 E2 - E4 ACE990 - range 1 0.1 VA ACE990 - range 1 0.01587 E1 - E3 0.1 VA 0.01667 E4 - E5 ACE990 - range 1 0.1 VA ACE990 - range 1 0.02000 E3 - E4 0.1 VA 0.02632 E2 - E3 ACE990 - range 1 0.1 VA E1 - E2 0.04000 ACE990 - range 1 0.2 VA 0.05780 E1 - E5 ACE990 - range 2 2 5 V/A 0.06757 E2 - E5 ACE990 - range 2 2.5 VA 0.08850E1 - E4 ACE990 - range 2 3.0 VA 0.09091 E3 - E5 ACE990 - range 2 3.0 VA 0.11364 E2 - E4 ACE990 - range 2 3.0 VA 0.15873 ACE990 - range 2 E1-E3 4.5 VA 0.16667 E4 - E5 ACE990 - range 2 4.5 VA 0.20000 E3 - E4 ACE990 - range 2 5.5 VA 0.26316 E2-E3 ACE990 - range 2 7.5 VA

Example:

Given a core balance CT with a ratio of 1/400 2 VA, used within a measurement range of 0.5 A to 60 A.

How should it be connected to Sepam via the ACE990?

- 1. Choose a close approximation of the rated current In0, i.e. 5 A.
- 2. Calculate the ratio:
- approx. In0/number of turns = 5/400 = 0.0125.
- 3. Find the closest value of k in the table opposite to k = 0.01136.
- 4. Check the mininum power required for the core balance CT: 2 VA core balance CT > 0.1 VA V OK. 5. Connect the core balance CT secondary to ACE990 input
- terminals F2 and F4
- 6. Set Sepam up with:

 $In0 = 0.01136 \times 400 = 4.5 A.$

This value of In0 can be used to monitor current between 0.45 A and 67.5 A.

Wiring of MV core balance CT secondary circuit:

- S1 output to ACE990 E2 input terminal
- S2 output to ACE990 E4 input terminal.

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding).

Connection to Sepam series 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding).

Recommended cables

- Cable between core balance CT and ACE990: less than 50 m (160 ft) long
- Sheathed cable, shielded by tinned copper braid between the ACE990 and Sepam, maximum length 2 m (6.6 ft)
- Cable cross-section between 0.93 mm² (AWG 18) and 2.5 mm² (AWG 12)
- Resistance per unit length less than 100 mW/m (30.5 mW/ft)
- Minimum dielectric strength: 100 Vrms.

Connect the connection cable shielding in the shortest manner possible (2 cm or 5.08 in maximum) to the shielding terminal on the Sepam connector.

Flatten the connection cable against the metal frames of the cubicle. The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to:

- complete library: technical documents, catalogs, FAQs, brochures...
- selection guides from the e-catalog.
- product discovery sites and their Flash animations.
 You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Sepam series 20 Sepam series 40 Sepam series 80

Order form

Range description	3
Sepam series 20 and Sepam series 40	47
Sepam series 80	85
Additional modules and accessories	139
Sepam series 20	218
Sepam series 40	219
Sepam series 80	220
Sepam 100 LD	221
Sepam 100 MI	222
Sepam accessories and spare parts	223
Index	227

Sepam series 20

Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes match your choices.

Base unit and UMI				Application	Type		Sensor			
Base unit with advanced	IUMI	S10UD	59607	Substation	S20	59620	CT 🔣	CT 📉	LPCT	
With lead seal accessory (1)		AMT852	59639		S23	59626	CT 📗	СТ	LPCT	
(1) Can be used only wit	h an advance l	ЈМІ.		Transformer	T20	59621	СТ	СТ	LPCT	
Base unit with basic UM	I	S10UX	59603		T23	59627	CT 📗	СТ	LPCT	
Remote advanced	d UMI module	DSM303	59608	Motor	M20	59622	СТ	СТ	LPCT	
Connection cord	L = 0.6 m	CCA770	59660	Busbars	B21	59624				VT 📗
	L = 2 m	CCA772	59661		B22	59625				PT 📗
	L = 4 m	CCA774	59662				59630	59629	59631	59632
Mounting plate		AMT840	59670				CCA630	CCA634	CCA670	CCT640
Working language										
Sepam series 20	EN/FR		59609							
	EN/ES		59611							
Connectors				Note:						
Туре	Screw-type	CCA620	59668	CCA630: 3 phas CCA634: 3 phas						
Ring-lug type		CCA622	59669	CCA034. 3 pilas	e C1 +10					

Modules,	communication	interfaces and	I core balance CTs

Core balance C Is		
Core balance CT, Ø 120 mm	CSH120	59635
Core balance CT, Ø 200 mm	CSH200	59636
Interposing ring CT	CSH30	59634
Core balance CT interface	ACE990	59672

Note: only one core balance CT can be added. Warning: Using core balance CTs is incompatible with the CCA634.

Modules		
Input / output modules		
10 inputs + 4 outputs, 24-250 V DC	MES114	59646
10 inputs + 4 outputs, 110-125 V DC / V AC	MES114E	59651
10 inputs + 4 outputs, 220-250 V DC / V AC	MES114F	59652

Note: the Sepam base unit has 4 outputs; only one input/output module can be added. Remote modules 59660 8 temperature sensor MET148-2 **59641** L = 0.6 m CCA770 59661 L = 2 m CCA772 L = 4 m 59662 CCA774

Note: the MET148-2 can be used only with applications T and M. MSA141

59647 L = 0.6 m Analog output module CCA770 59660 L = 2 mCCA772 59661 59662 L = 4 m CCA774

Note: MSA141 can be used with all applications.

110te: WOAT+T can be used with all applications.							
Communication interfaces							
Modbus interfaces			Connection	on cord			
2-wire RS 485 interface	ACE949-2	59642	CCA612	59663			
4-wire RS 485 interface	ACE959	59643	CCA612	59663			
Fiber optic interface	ACE937	59644	CCA612	59663			
Multi-protocol interfaces (Modbus, DNP3 or IEC 60870-5-103)							
2-wire RS 485 interface	ACE969TP-	2 59723	CCA612	59663			
Fiber optic interface	ACE969FO-	2 59724	CCA612	59663			

Note: only one interface per application.

Sepam series 40Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration.

Base unit and UM	l			Application	Type		Sensor		
Base unit with advance	d UMI	S10MD	59604	Substation	S40	59680	CT	CT 🔲	LPCT
With lead seal ac	cessory ⁽¹⁾	AMT852	59639		S41	59681	CT 🔳	CT 🔲	LPCT [
(1) Can be used only w	ith an advance	ЈМІ.			S42	59682	CT 🔲	CT 🔲	LPCT [
Base unit with basic UN	11	S10MX	59600		S43	59687	CT 🔲	CT 🔲	LPCT [
Remote advance	d UMI module	DSM303	59608	Transformer	T40	59683	CT 🔲	CT 🔲	LPCT [
Connection cord	L = 0.6 m	CCA770	59660		T42	59684	CT	CT _	LPCT
	L = 2 m	CCA772	59661	Motor	M41	59685	CT 🔲	CT 🔲	LPCT [
	L = 4 m	CCA774	59662	Generator	G40	59686	CT 🔲	CT _	LPCT
Mounting plate		AMT840	59670				59630	59629	59631
Working language)						CCA630	CCA634	CCA670
Sepam series 40	EN/FR		59615						
	EN/ES		59616	Note:					
Connectors		CCA630: 3 phase CT CCA634: 3 phase CT + IO							
Type Screw-type CCA620 - 59668 and CCA626 - 59656		CCA634. 3 priase	C1 + 10						
Ring-lug type CC	A622 - 59669 a	nd CCA627	- 59657						

Core balance CTs			Modules					
Core balance CT, Ø 120 mm	CSH120	59635	Input / output modules					
ore balance CT, Ø 200 mm	CSH200	59636	10 inputs + 4 outputs, 24-250 V DC					59646
terposing ring CT	CSH30	59634	10 inputs + 4 outputs, 110-125 V DC / V AC MES114E					
ore balance CT interface	ACE990	59672	10 inputs + 4 outputs, 220	MES114F	59652			
ote: only one core balance CT c	an be added.		Note: the Sepam base u	nit has 4 outputs	s; only one input	t/output modu	ule can be ac	lded.
darning: Using core balance CTs	s is incompatible	with	Remote modules				Connection	on cord
e CCA634.			8 temperature sensor	MET148-2	59641	L=0.6 m	CCA770	59660
		module			L = 2 m	CCA772	59661	
						L = 4 m	CCA774	59662
			Maximum of 2 modulos r	oronlination				
			Maximum of 2 modules p Analog output module	MSA141	59647	L = 0.6 m L = 2 m	CCA770 CCA772	59660 59661
					59647			
				MSA141		L = 2 m L = 4 m	CCA772	59661
			Analog output module	MSA141		L = 2 m L = 4 m	CCA772	59661
			Analog output module Note: the MSA141 can be	MSA141		L = 2 m L = 4 m	CCA772	59661 59662
			Analog output module Note: the MSA141 can be Communication int	MSA141		L = 2 m L = 4 m	CCA772 CCA774	59661 59662
			Analog output module Note: the MSA141 can be Communication interfaces	MSA141 De used with all terfaces	the applications	L = 2 m L = 4 m	CCA772 CCA774	59661 59662 on cord
			Note: the MSA141 can be Communication int Modbus interfaces 2-wire RS 485 interface	MSA141 De used with all terfaces ACE949-2	the applications	L = 2 m L = 4 m	CCA772 CCA774 Connection	59661 59662 on cord 59663
			Note: the MSA141 can be Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface	MSA141 De used with all terfaces ACE949-2 ACE959 ACE937	59642 59643 59644 59644	L=2 m L=4 m	CCA772 CCA774 Connection CCA612 CCA612	59661 59662 on cord 59663 59663
			Note: the MSA141 can be Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface	MSA141 De used with all terfaces ACE949-2 ACE959 ACE937	59642 59643 59644 NP3 or IEC 608	L=2 m L=4 m	CCA772 CCA774 Connection CCA612 CCA612	59661 59662 on cord 59663 59663

Sepam series 80

Ready-to-use configuration

Number of identical Sep	am
configurations ordered	

This order form can be used to define a complete Sepam configuration. Check the boxes or indicate the required quantities in the appropriate according to your choices.

Base unit and U	IMI			Application	Туре	B1 sen	sor		B2 sen	sor		
Base unit with mimi	c-based UMI	SEP888	59705	Substation	S80 59729	CT 🔲	CT 🔲	LPCT				
Base unit with adva	nced UMI	SEP383	59704		S81 59730	CT	CT	LPCT				
With lead sea	al accessory (1)	AMT852	59639		S82 59731	CT 📗	CT 📗	LPCT				
Base unit without ba	asic UMI	SEP080	59703		S84 59732	CT 🔳	CT 📗	LPCT				
Remote adva	ınced	DSM303	59608	Transformer	T81 59733	CT	CT	LPCT				
UMI module (compulsory with	SEP080)			T82 59734	CT 🔳	CT 📗	LPCT				
Connection c	ord L = 0.6 m	CCA770	59660		T87 59735	CT	CT		CT 🔲	CT		
	L = 2 m	CCA772	59661	Motor	M81 59736	CT 🔳	CT 📗	LPCT				
	L = 4 m	CCA774	59662		M87 59737	CT 🔳	CT	LPCT	CT 🔲	CT 📗	LPCT	
Mounting plan	te	AMT880	59706		M88 59738	CT 🔲	CT 🔲		CT 🔲	CT 📗		
Note: 8 mounting c	lips included			Generator	G82 59739	CT 🔳	CT	LPCT				
Memory cartrid	ge				G87 59741	CT	CT	LPCT	CT 🔲	CT 🔲	LPCT	
Memory cartridge		MMS020	59707		G88 59742	CT 🔣	CT		CT 🔲	CT 📗		
Logipam option		SFT080	59711	Busbar	B80 59743	CT	CT	LPCT				
Note: option require	ed to use Logipa	nm program.			B83 59744	CT 🔣	CT 📗					VT 📗
Working langua	age			Capacitor	C86 59745	CT 🔣	CT 🔲	LPCT	CT 🔲	CT 📗		
Sepam series 80	EN/FR		59709			59630	59629	59702	59630	59629	59702	59632
	EN/ES		59710			CCA630	CCA634	CCA671	CCA630	CCA634	CCA671	CCT640
Connectors												
Type	Screw-type	CCA620	59668	Note:	0.7							
	Ring-lug type	CCA622	59669	CCA630: 3 ph CCA634: 3 ph								

⁽¹⁾ Can be used only with an advance UMI

Modules, communication interfaces and core balance CTs

Core balance CTs		
Core balance CT, Ø 120 mm	CSH120	59635
Core balance CT, Ø 200 mm	CSH200	59636
Interposing ring CT	CSH30	59634
Core balance CT interface	ACE990	59672

Note: the total number of core balance CTs cannot exceed 2. Warning: Using core balance CTs is incompatible with the CCA634.

Modules	
Input / output modules	
14 inputs (24-250 V DC) + 6 outputs	MES120 59715
14 inputs (220-250 V DC) + 6 outputs	MES120G 59716
14 inputs (110-125 V DC) + 6 outputs	MES120H 59722

Note: the Sepam base unit comes with 5 outputs; 3 input/output modules can be added. Remote modules Connection cord 8 temperature sensor $L = 0.6 \, \text{m}$ CCA770 59660 MET148-2 59641 module CCA772 59661 L = 2 mCCA774 59662 L = 4 m

Note: the MET148-2 can be used only with applications T, M, G and C.

Maximum of 2 MET 148-2 modules per application.

MSA141 L = 0.6 m CCA770 59660 Analog output module L = 2 m CCA772 59661 L = 4 m CCA774 59662

Note: the MSA141 can be used with all the applications.

Synchro-check module MCS025 59712 AMT840 Mounting plate 59670

Note: the MCS025 can be used only with applications S, B, G and T. Comes with connection cord CCA785 and voltage connector CCT640.

Communication interfaces					
Modbus interfaces				Connectio	n cord
2-wire RS 485 interface	ACE949-2	59642]	CCA612	59663
4-wire RS 485 interface	ACE959	59643]	CCA612	59663
Fiber optic interface	ACE937	59644		CCA612	59663
Multi-protocol interfaces (Modbus, DNP3 or IEC 60870-5-103)					
2-wire RS 485 interface	ACE969TP-2	59723		CCA612	59663
Fiber optic interface	ACE969FO-2	59724		CCA612	59663

Note: the total number of communication interfaces cannot exceed 2.

Sepam 100 LD

When ordering Sepam 100 LD, stabilization plate and/or surge limiters, please enclose a photocopy of this page with your order, filling in the requested quantities in the spaces provided _____ and ticking off the boxes

to indicate your choices.

Sepam 100 S01 LD	(supplied with connections and mounting lugs)	
Quantity		
Rated frequency	50 Hz	
	60 Hz	
Version	Single-phase	
	Three-phase	
Auxiliary power supply	24 to 30 V DC	
	48 to 125 V DC	
	220 to 250 V DC	
	100 to 127 V AC	
	220 to 240 V AC	
Stabilization plate		
Resistance	68 W - 280 W	
	150 W - 280 W	
	270 W - 280 W	
	470 W - 180 W	
	680 W - 180 W	
Surge limiters		
Single unit		
Triple unit		

Sepam 100 MI

Box ${\color{orange} \,\boxtimes\,}$ corresponds to none priced functions.

Sepam 100 MI	
Туре	Quantity
Sepam 100M I-X00	
Sepam 100M I-X01	
Sepam 100M I-X02	
Sepam 100M I-X03	
Sepam 100M I-X10	
Sepam 100M I-X11	
Sepam 100M I-X12	
Sepam 100M I-X13	
Sepam 100M I-X14	
Sepam 100M I-X15	
Sepam 100M I-X16	
Sepam 100M I-X17	
Sepam 100M I-X18	
Sepam 100M I-X22	
Supply voltage	
24/30 V AC/DC	
48/127 V AC/DC	

Sepam accessories and spare parts

Check	he boxes or indicate the required quantities in the appropriate spaces
	according to your choices.

Mounting accessories			
Sepam series 20, Sepam series 40 or MCS025	:		
Mounting plate	AMT840	59670	
Sepam series 20 and Sepam series 40 with ad	vanced UMI		
Lead seal accessory	AMT852	59639	
Sepam series 80			
Mounting plate	AMT880	59706	
Blanking plate	AMT820	59699	
Software tools			
Sepam PC software: SFT2841 and SFT2826	SFT2841 CD	59679	
(1 CD-ROM without connection cord CCA783)	CCA702	59664	_
PC connection cord	CCA783	TSXCUSB232	_
USB/RS232 interface (CCA783 cord must be ordered sep	**	59727	
Logipam SFT2885 programming software	CD SFT2885		
IEC 61850 configuration software	CD SFT850	59726	
Input / output modules			
Sepam series 20 and series 40			
10 inputs + 4 outputs, 24-250 V DC	MES114	59646	
10 inputs + 4 outputs, 110-125 V DC / V AC	MES114E	59651	
10 inputs + 4 outputs, 220-250 V DC / V AC	MES114F	59652	
Sepam series 80			
14 inputs + 6 outputs, 24-250 V DC	MES120	59715	
14 inputs + 6 outputs, 110-125 V DC	MES120H	59722	
14 inputs + 6 outputs, 220-250 V DC	MES120G	59716	
Remote modules and cords			
8 temperature sensor module	MET148-2	59641	
Analog output module	MSA141	59647	
Remote advanced UMI module	DSM303	59608	
	MCS025	59712	\vdash
Synchro-check module (including connection cord CCA785)			
Remote module connection cord L = 0.6 m	CCA770	59660	
Remote module connection cord L = 2 m	CCA772	59661	
Remote module connection cord L = 4 m	CCA774	59662	
Synchro-check module connection cord	CCA785	59665	
L=2m(spare parts) Communication accessories			
Sepam communication interfaces	ACE040.0	59642	
2-wire RS 485 Modbus interface (without CCA612)	ACE949-2		
4-wire RS 485 Modbus interface (without CCA612)	ACE959	59643	
Fiber optic Modbus interface (without CCA612)	ACE937	59644	
RS 485 multi-protocol 2-wire interface (without CCA612)	ACE969TP-2	59723	
Fiber optic multi-protocol interface (without CCA612)	ACE969FO-2	59724	
Connection cord, L = 3 m	CCA612	59663	
Converters			
RS 232 / RS 485 converter	ACE909-2	59648	
RS 485 / RS 485 interface (AC)	ACE919CA	59649	
RS 485 / RS 485 interface (DC)	ACE919CC	59650	
Ethernet gateway	EGX100	EGX100MG	
Ethernet webserver	EGX400	EGX400MG	
Sepam IEC 61850 server (with one ECI850 cat. no.	ECI850	59638	
59653 and two surge arresters cat. no. 16595)		T00541/2122	
Ethernet configuration kit for ECI850		TCSEAK0100	
Core balance CTs			
Core balance CT, Ø 120 mm	CSH120	59635	
Core balance CT, Ø 200 mm	CSH200	59636	T
Interposing ring CT	CSH30	59634	
Core balance CT interface	ACE990	59672	
Accessories for phase-current sense			
-	ACE917	59667	
			1
LPCT injection adapter Remote LPCT test plug	CCA613	59666	_

Sepam accessories and spare parts

Check the boxes

or indicate the required quantities in the appropriate spaces
according to your choices.

Manuals			
Sepam series 20			
User's manual	PCRED301005	EN FR	
Sepam series 40			
User's manual	PCRED301006	EN FR	
Sepam series 80			
Metering, protection, control and monitoring user's manual	SEPED303001	EN FR	
Modbus communication user's manual	SEPED303002	EN FR	
Installation and operation manual	SEPED303003	EN FR	
Communication protocol			
DNP3 protocol	SEPED305001	EN FR	
IEC 60870-5-103 protocol	SEPED305002	EN FR	

Note: the technical manuals must be ordered separately form the CDI centre in Evreux.

Spare connectors			
Sepam			
20-pin screw-type connector	CCA620	59668	
20-pin ring lug connector	CCA622	59669	
6-pin screw-type connector	CCA626	59656	
6-pin ring lug connector	CCA627	59657	
1A/5ACT current connector	CCA630	59630	
1A/5ACT + IO current connector	CCA634	59629	
LPCT lateral current connector	CCA670	59631	
LPCT radial current connector	CCA671	59702	
VT voltage connector	CCT640	59632	
MES modules			
Connectors for 2 MES114 and 2 MES120	Kit 2640	59676	
Spare Sepam series 80 base units			
With mimic-based UMI	SEP888	59705	
With advanced UMI	SEP383	59704	
Without UMI	SEP080	59703	
12 spring clips		XBTZ3002	

Note: the base units are supplied without connectors and without memory cartridges.

Spare Sepam series 80 memory cartridge Memory cartridges MMS020 59707 Note: memory cartridges cannot be sold without application.

Application Working language Logipam Type 59709 59710 59711 59729 EN/FR EN/SP S80 Substation EN/SP S81 EN/FR 59730 S82 59731 EN/FR EN/SP 59732 EN/FR EN/SP S84 Transformer T81 59733 EN/FR EN/SP T82 59734 EN/FR EN/SP T87 59735 EN/FR EN/SP Motor M81 59736 EN/FR EN/SP EN/FR EN/SP M87 59737 M88 59738 EN/FR EN/SP G82 EN/FR EN/SP Generator 59739 G87 59741 EN/SP EN/FR G88 59742 EN/FR EN/SP 59743 EN/FR EN/SP Busbar B80 59744 EN/FR EN/SP B83 Capacitor 59745 EN/FR EN/SP Spare Sepam serie 20 and serie 40 DSM replacement kit

Kit DSM 20/40 (serial number < 0440001) SDK303 **59694**

Note: the same kit can be used with both Sepam series 20 and Sepam series 40.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to:

- complete library: technical documents, catalogs, FAQs, brochures...
- selection guides from the e-catalog.
- product discovery sites and their Flash animations.
 You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.

Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Sepam series	20
Sepam series	40
Sepam series	80

Index

Range description	3
Sepam series 20 and Sepam series 40	47
Sepam series 80	85
Additional modules and accessories	139
Order form	217
Reference index	228

Reference index

Commercial reference	Catalog number	Designation	Pages
Α	•	•	·
ACE909-2	59648	RS485/RS232 converter	140, 144, 179, 189-190, 223
ACE917	59667	LPCT injection adaptor	207-209, 223
ACE919CA	59649	RS485/RS485 interface (AC)	140, 179, 191-192, 223
ACE919CC	59650	RS485/RS485 interface (DC)	140, 179, 191-192, 223
ACE937	59644	Fiber optic interface	48-49, 87, 140, 179, 183, 218-220, 223
ACE949-2	59642	RS485 interface 2 Wires	48-49, 87, 140, 179, 181, 189, 191, 218-220, 223
ACE959	59643	RS485 interface 4 Wires	48-49, 87, 140, 179, 182, 189, 191, 218-220, 223
ACE969FO-2	59724	FO multi-protocol interface	48-49, 87, 140, 179-180, 184-188, 218-220, 223
ACE969FO	59721	FO multi-protocol interface	48-49, 87, 140, 179-180, 184-188, 218-220, 223
ACE969TP-2	59723	RS485 multi-protocol interface	48-49, 87, 140, 179-180, 184-188, 218-220, 223
ACE969TP	59720	RS485 multi-protocol interface	48-49, 87, 140, 179-180, 184-188, 218-220, 223
ACE990	59672	Core balance CT interface	51-52, 63, 80, 89-90, 108, 132, 140, 202, 211, 213-214, 218-220, 223
AMT820	59699	Shield / Blank Plate	120, 223
AMT840	59670	Mounting plate	69-71, 164, 166, 218-220, 223
AMT852	59639	Sealing accessory	70, 120, 218-220, 223
AMT880	59706	Mounting plate	118, 120, 125, 220, 223
	100.00		,,,,
В			
B20	59623	Busbar B20	48
B21	59624	Busbar B21	3, 16-17, 48, 50, 70, 73, 76, 152, 203, 218
B22	59625	Busbar B22	3, 14-17, 48, 50, 70, 73, 76, 152, 203, 218
B80	59743	Busbar B80	3, 16-17, 85-88, 135-136, 156-157, 220, 224
B83	59744	Busbar B83	3, 16-17, 85-88, 120, 122, 128, 130, 134, 136, 156-157, 203, 220, 224
С			
C86	59745	Capacitor C86	3, 32-33, 85-88, 122, 129-130, 156-157, 220, 224
CCA612	59663	Communication cord L=3m	76-77, 127, 180-183, 186-187, 218-220, 223
CCA613	59666	LPCT test plug	207-209, 223
CCA620	59668	20 pins screw type connector	70, 76-77, 120, 127-128, 164-166, 218-220, 224
CCA622	59669	20 pins ring lug connector	70, 76-77, 120, 127, 218-220, 224
CCA626	59656	6 pins screw type connector	70, 77, 219, 224
CCA627	59657	6 pins ring lug connector	70, 77, 219, 224
CCA630	59630AA	1/5A CT current connector	70, 74, 76-78, 120, 127-130, 205-206, 218-220, 224
CCA634	59629	1/5A CT+I0 current connector	70, 74, 76-79, 120, 127, 131, 205-206, 211, 218-220, 224
CCA670	59631	LPCT current connector	70, 76-78, 207-209, 218-219, 224
CCA671	59702	LPCT current connector	120, 127, 129-130, 207-209, 220, 224
CCA770	59660	Remote module cord L=0,6m	76-77, 127, 158-159, 161, 218-220, 223
CCA772	59661	Remote module cord L=2m	76-77, 127, 158-159, 161-162, 218-220, 223
CCA774	59662	Remote module cord L=4m	76-77, 127, 158-159, 161-162, 218-220, 223
CCA783	59664	PC connection cord	141, 144, 223
CCA785	59665	MCS025 connection cord	127, 158, 164-167, 220, 223
CCT640	59632	VT voltage connector	70, 76, 81, 120, 128, 164-166, 203, 218, 220, 224
CD SFT2885	59727	Logipam software CD	223
CD SFT850	59726	IEC 61850 configuration software	223
CSH120	59635AA	Residual current sensor, d=120	51-52, 79, 89-90, 131, 140, 202, 210-211, 218-220, 223
CSH200	59636AA	Residual current sensor, d=200	51-52, 79, 89-90, 131, 140, 202, 210-211, 218-220, 223
	1		

Reference index

Commercial	Catalog	Designation	Pages
reference	number		
D			
DSM303	59608	Remote advanced UMI module	68-71, 117-118, 120, 139, 158, 162-163, 218-220, 223
E			
ECI850	59638	IEC61850 Sepam Server (with surge protection)	36, 39-40, 49, 87, 144, 179, 193-196, 223
G			
G40	59686	Generator G40	3, 28-30, 49-50, 153, 219
G82	59739	Generator G82	3, 28-29, 31, 86-88, 156-157, 220, 224
G87	59741	Generator G87	3, 28, 30, 86-88, 122, 130, 156-157, 220, 224
G88	59742	Generator G88	3, 28, 31, 86-88, 122, 130, 156-157, 220, 224
K			
Kit 2640	59676	2 sets of spare connectors	224
M			
M20	59622	Motor M20	3, 24-26, 48, 50, 73, 76, 152, 218
M41	59736	Motor M41	3, 24-26, 49-50, 153, 219
M81	59736	Motor M81	3, 24-26, 86-88, 156-157, 220, 224
M87	59737	Motor M87	3, 24-25, 86-88, 122, 130, 156-157, 220, 224
M88	59738	Motor M88	3, 24, 27, 86-88, 122, 130, 156-157, 220, 224
MCS025	59712	Synchro-check module	3, 14, 16, 18, 28, 86-87, 91, 110, 127, 139, 158, 164-167, 220, 223
MES114	59646	10 inputs + 4 outputs / 24-250Vdc	48-49, 64-65, 71, 73-74, 139, 150-151, 218-219, 223-224
MES114E	59651	10 inputs + 4 outputs / 110-125V	48-49, 74, 150-151, 218-219, 223
MES114F	59652	10 inputs + 4 outputs /220-250V	48-49, 74, 150-151, 218-219, 223
MES120	59715	14 inputs + 6 outputs / 24-250Vdc	86-87, 109, 122-123, 125, 139, 154-157, 220, 223-224
MES120G	59716	14 inputs + 6 outputs / 220-250Vdc	139, 154-157, 220, 223
MES120H	59722	14 inputs + 6 outputs / 110-125Vdc	139, 154-157, 220, 223
MET148-2	59641	8 temperature sensor module	3, 18, 24, 28, 32, 48-50, 52, 74, 86-88, 90, 139, 158-160, 218-220, 223
MMS020	59707	Memory cartridge series 80	220, 224
MSA141	59647	Analog output module	40, 48-49, 55, 74, 95, 139, 158, 161, 218-220, 223
S			
S20	59620	Substation S20	3, 14-15, 32-33, 48, 50, 73, 76, 152, 193, 218
S23	59626	Substation S23	3, 14-15, 32-33, 48, 50, 73, 76, 152, 218
S40	59680	Substation S40	3, 14-15, 32-33, 49-50, 153, 193, 219
S41	59681	Substation S41	3, 14, 49-50, 153, 219
S42	59682	Substation S42	3, 14-15, 49-50, 153, 219
S43	59687	Substation S43	3, 14, 49, 219
S80	59729	Substation S80	3, 14-15, 86-88, 156-157, 193, 220, 224
S81	59730	Substation S81	3, 14, 86-88, 156-157, 220, 224
S82	59731	Substation S82	3, 14-15, 86-88, 156-157, 220, 224
S84	59732	Substation S84	3, 14-15, 86-88, 156-157, 220, 224
SEP080	59703	Series 80 base unit without HMI	220, 224
SEP383	59704	Series 80 base unit with HMI	220, 224
SEP888	59705	Series 80 with mimic-based UMI	220, 224
SFT080	59711	Logipam option	116, 148, 220

Commercial reference	Catalog number	Designation	Pages
T			
T20	59621	Transformer T20	3, 18-19, 21, 48, 50, 73, 76, 152, 218
T23	59627	Transformer T23	3, 18-19, 48, 50, 73, 76, 152, 218
T40	59683	Transformer T40	3, 18-19, 21, 49-50, 153, 219
T42	59684	Transformer T42	3, 18, 23, 49-50, 153, 219
T81	59733	Transformer T81	3, 18-22, 86-88, 156-157, 220, 224
T82	59734	Transformer T82	3, 18, 23, 86-88, 156-157, 220, 224
T87	59735	Transformer T87	3, 18, 20, 22-23, 86-88, 122, 130, 156-157, 220, 224

Schneider Electric Industries SAS

89, boulevard Franklin Roosevelt F - 92505 Rueil-Malmaison Cedex (France) Tel: +33 (0)1 41 29 85 00

http://www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

Printed on recycled paper.

Design: Sigma Kudos France Publication: Schneider Electric Printed: